Artículos
URI permanente para esta colección
Examinar
Examinando Artículos por Título
Mostrando 1 - 20 de 150
Resultados por página
Opciones de ordenación
Publicación Adhesion characteristics between keratin fibers and unsaturated polyester(IMPRENTA UNIV ANTIOQUIA, 2008-12-01) Paniagua, Marco; Ossa, Alexander; Ruiz, Gladys; Universidad EAFIT. Departamento de Ingeniería de Producción; Materiales de IngenieríaThis work presents the methods and results employed to find the adhesion characteristics between keratin fibers and unsaturated polyester as matrix material. The fibers were conditioned prior to testing using four different methods in order to establish the effect of these treatments on the adhesion to the matrix by means of i) monofilament pull-out testing, as direct method; and ii) Lamina tensile tests as indirect method to analyze the adhesion in the fracture zone with the help of electron microscopy (SEM).Publicación Análisis de falla de la mordaza plana de una prensa hidráulica(IMPRENTA UNIV ANTIOQUIA, 2008-01-01) Ossa, E.A.; Paniagua, M.A.; Universidad EAFIT. Departamento de Ingeniería de Producción; Materiales de IngenieríaThis paper describes the analysis and investigation of the causes of the failure of an hydraulic press jaw face grip. Analysis of the fractured surfaces indicated the creation of cracks due to stress concentrators as a result of defective design. On the other hand, metallographic examination revealed the presence of aligned clusters of primary carbides that along with the stress concentrators induced the premature failure of the grip.Ítem Análisis de la respuesta mecánica de recubrimientos elaborados mediante proyección térmica por plasma usando la medición de esfuerzos residuales y el método de elementos finitos a escala estructural: Efecto de la Red de Poros.(Universidad de Tarapaca, 2011-01-01) C. C. Palacio; Universidad EAFIT. Departamento de Ciencias Básicas; Electromagnetismo Aplicado (Gema)En el presente trabajo se estudia la respuesta mecánica de recubrimientos elaborados mediante proyección térmica por plasma ante la presencia de esfuerzos residuales y campos de esfuerzos generados por deformacionesPublicación Architecture and microstructure of cortical bone in reconstructed canine mandibles after bone transport distraction osteogenesis(SPRINGER, 2011-11-01) Zapata, Uriel; Halvachs, Emily K.; Dechow, Paul C.; Elsalanty, Mohammed E.; Opperman, Lynne A.; Universidad EAFIT. Departamento de Ingeniería de Producción; Materiales de IngenieríaReconstruction of the canine mandible using bone transport distraction osteogenesis has been shown to be a suitable method for correcting segmental bone defects produced by cancer, gunshots, and trauma. Although the mechanical quality of the new regenerate cortical bone seems to be related to the mineralization process, several questions regarding the microstructural patterns of the new bony tissue remain unanswered. The purpose of this study was to quantify any microstructural differences that may exist between the regenerate and control cortical bone. Five adult American foxhound dogs underwent unilateral bone transport distraction of the mandible to repair bone defects of 30-35 mm. Animals were killed 12 weeks after the beginning of the consolidation period. Fourteen cylindrical cortical samples were extracted from the superior, medial, and inferior aspects of the lingual and buccal plates of the reconstructed aspect of the mandible, and 21 specimens were collected similarly from the contralateral aspect of the mandible. Specimens were evaluated using histomorphometric and micro-computed tomographic techniques to compare their microstructure. Except for differences in haversian canal area, histomorphometric analyses suggested no statistical differences in microstructure between regenerate and control cortical bone. Morphological evaluation suggested a consistent level of anisotropy, possibly related to the distraction vector. After 12 weeks' consolidation, bone created during bone transport distraction osteogenesis was comparable to native bone in microstructure, architecture, and mechanical properties. It is proposed that, after enough time, the properties of the regenerate bone will be identical to that of native bone. © Springer Science+Business Media, LLC 2010.Publicación Automatic detection of building typology using deep learning methods on street level images(PERGAMON-ELSEVIER SCIENCE LTD, 2020-03-20) Duque, J.; Gonzalez, D.; Rueda Plata, Diego; Acevedo, A.; Ramos, R.; Betancourt, A.; García, S.; Universidad EAFIT. Departamento de Ingeniería de Producción; Materiales de IngenieríaAn exposure model is a key component for assessing potential human and economic losses from natural disasters. An exposure model consists of a spatially disaggregated description of the infrastructure and population of a region under study. Depending on the size of the settlement area, developing such models can be a costly and time-consuming task. In this paper we use a manually annotated dataset consisting of approximately 10,000 photos acquired at street level in the urban area of Medellín to explore the potential for using a convolutional neural network (CNN) to automatically detect building materials and types of lateral-load resisting systems, which are attributes that define a building's structural typology (which is a key issue in exposure models for seismic risk assessment). The results of the developed model achieved a precision of 93% and a recall of 95% when identifying nonductile buildings, which are the buildings most likely to be damaged in an earthquake. Identifying fine-grained material typology is more difficult, because many visual clues are physically hidden, but our model matches expert level performances, achieving a recall of 85% and accuracy scores ranging from 60% to 82% on the three most common building typologies, which account for 91% of the total building population in Medellín. Overall, this study shows that a CNN can make a substantial contribution to developing cost-effective exposure models. © 2020 Elsevier LtdPublicación Bioinspired hierarchical impact tolerant materials(IOP PUBLISHING LTD, 2020-07-01) Estrada, Susana; Munera, Juan Camilo; Hernandez, Javier; Arroyave, Mauricio; Arola, Dwayne; Ossa, Alex; Universidad EAFIT. Departamento de Ingeniería de Producción; Materiales de IngenieríaThe quest for new light-weight materials with superior mechanical properties is a goal of materials scientists and engineers worldwide. A promising route in this pursuit is drawing inspiration from nature to design and develop materials with enhanced properties. By emulating the graded mineral content and hierarchical structure of fish scales of the Arapaima gigas from the nano to macro scales, we were able to develop bioinspired laminated composites with improved impact resistance. Activated by the addition of nano-particles of Al2O3 and nano-layers of TiN to a thermoplastic fiber substrate, new energy dissipation mechanisms operating at the nanoscale enhanced the energy absorption and stiffness of the bioinspired material. Remarkably, the newly developed materials are easily transferred to the industry with minimum associated manufacturing costs.Publicación Biomechanics of the canine mandible during bone transport distraction osteogenesis(ASME, 2014-11-01) Zapata, Uriel; Dechow, Paul C.; Watanabe, Ikuya; Elsalanty, Mohammed E.; Opperman, Lynne A.; Universidad EAFIT. Departamento de Ingeniería de Producción; Materiales de IngenieríaThis study compared biomechanical patterns between finite element models (FEMs) and a fresh dog mandible tested under molar and incisal physiological loads in order to clarify the effect of the bone transport distraction osteogenesis (BTDO) surgical process. Three FEMs of dog mandibles were built in order to evaluate the effects of BTDO. The first model evaluated the mandibular response under two physiological loads resembling bite processes. In the second model, a 5.0 cm bone defect was bridged with a bone transport reconstruction plate (BTRP). In the third model, new regenerated bony tissue was incorporated within the defect to mimic the surgical process without the presence of the device. Complementarily, a mandible of a male American foxhound dog was mechanically tested in the laboratory both in the presence and absence of a BTRP, and mechanical responses were measured by attaching rosettes to the bone surface of the mandible to validate the FEM predictions. The relationship between real and predicted values indicates that the stress patterns calculated using FEM are a valid predictor of the biomechanics of the BTDO procedures. The present study provides an interesting correlation between the stiffness of the device and the biomechanical response of the mandible affected for bone transport. Copyright © 2014 by ASME.Publicación Bone regeneration and docking site healing after bone transport distraction osteogenesis in the canine mandible(W.B. Saunders Ltd, 2012-01-01) Nagashima, L.K.; Rondon-Newby, M.; Zakhary, I.E.; Nagy, W.W.; Zapata, U.; Dechow, P.C.; Opperman, L.A.; Elsalanty, M.E.; Universidad EAFIT. Departamento de Ingeniería de Producción; Materiales de IngenieríaPurpose: Bone transport distraction osteogenesis provides a promising alternative to traditional grafting techniques. However, existing bone transport distraction osteogenesis devices have many limitations. The purpose of this research was to test a new device, the mandibular bone transport reconstruction plate, in an animal model with comparable mandible size to humans and to histologically and mechanically examine the regenerate bone. Materials and Methods: Eleven adult foxhounds were divided into an unreconstructed control group of 5 animals and an experimental group of 6 animals. In each animal, a 34-mm segmental defect was created in the mandible. The defect was reconstructed with a bone transport reconstruction plate. Histologic and biomechanical characteristics of the regenerate and unrepaired defect were analyzed and compared with bone on the contralateral side of the mandible after 4 weeks of consolidation. Results: The reconstructed defect was bridged with new bone, with little bone in the control defect. Regenerate density and microhardness were 22.3% and 42.6%, respectively, lower than the contralateral normal bone. Likewise, the anisotropy of the experimental group was statistically lower than in the contralateral bone. Half the experimental animals showed nonunion at the docking site. Conclusion: The device was very stable and easy to install and activate. After 1 month of consolidation, the defect was bridged with new bone, with evidence of active bone formation. Regenerate bone was less mature than the control bone. Studies are underway to identify when the regenerate properties compare with normal bone and to identify methods to augment bone union at the docking site. © 2012 American Association of Oral and Maxillofacial Surgeons.Publicación Características de adhesión entre fibras de queratina y poliéster insaturado(IMPRENTA UNIV ANTIOQUIA, 2008-01-01) Paniagua, M.; Ossa, A.; Ruiz, G.; Universidad EAFIT. Departamento de Ingeniería de Producción; Materiales de IngenieríaThis work presents the methods and results employed to find the adhesion characteristics between keratin fibers and unsaturated polyester as matrix material. The fibers were conditioned prior to testing using four different methods in order to establish the effect of these treatments on the adhesion to the matrix by means of i) monofilament pull-out testing, as direct method; and ii) Lamina tensile tests as indirect method to analyze the adhesion in the fracture zone with the help of electron microscopy (SEM).Publicación Características estructurales de escuelas colombianas de pórticos de hormigón reforzado con mampostería no reforzada(Fondo Editorial Universidad EAFIT, 2017-05-08) Acevedo A.B.; Zora-Mejía, Faver N; Universidad EAFIT. Departamento de Ingeniería de Producción; Materiales de IngenieríaAssessment of the seismic vulnerability of the building stock of a region is a key issue for its seismic risk evaluation.Ítem Caracterización de Imanes para aplicación en sistemas de sensado de posición(Sociedad Colombiana de Física, 2010-06-25) Guarin, Nicolas; Velásquez, A. A.; Universidad EAFIT. Departamento de Ciencias Básicas; Electromagnetismo Aplicado (Gema)This paper reports the characterization of a set of Neodymium magnets with different sizes and geometries, which is devoted to determine the influence of the former parameters both in the magnitude as in the direction of the magnetic fieldÍtem Caracterización y calibración de un instrumento AFM utilizado para producir nanodeformación en superficies altamente rígidas(2006-02-01) Arroyave, Mauricio; Universidad EAFIT. Departamento de Ciencias Básicas; Electromagnetismo Aplicado (Gema)Ítem Characterization of SrTiO3 thin films at microwave frequencies using coplanar waveguide linear resonator method(John Wiley & Sons Inc., 2011-07-01) Marulanda, José Ignacio; Universidad EAFIT. Departamento de Ciencias Básicas; Electromagnetismo Aplicado (Gema)Publicación Chemical, structural and mechanical characterization of bovine enamel(PERGAMON-ELSEVIER SCIENCE LTD, 2020-01-01) Arango-Santander S.; Montoya C.; Pelaez-Vargas A.; Ossa E.A.; Universidad EAFIT. Departamento de Ingeniería de Producción; Materiales de IngenieríaObjective: The purpose of this investigation was to establish microstructure, microhardness, fracture toughness, chemical composition, and crack repair of bovine enamel and to compare these features with their human counterparts. Design: Bovine enamel fragments were prepared and optical microscopy and atomic force microscopy were used to establish microstructure; Raman spectroscopy was used to estimate composition and microindentation using Vickers testing was performed to evaluate hardness. Results: A strong dependence between indentation load and microhardness values was observed, as was the case in human enamel. Similar microstructure and chemical composition between bovine and human enamel, 7.89% lower microhardness and 40% higher fracture toughness values for bovine enamel were found. Conclusion: From a structural and mechanical standpoint, bovine enamel is a suitable alternative to human enamel for in vitro testing of dental products. © 2019 Elsevier LtdÍtem Comportamiento Dielérctrico de un Hidrogel de Alcohol Polivinílico Obtenidos por la Técnica Congelamiento/Descongelamiento(UNIV NAC COLOMBIA, FAC NAC MINAS, 2011-02-01) JARAMILLO, JUAN MANUEL; Universidad EAFIT. Departamento de Ciencias Básicas; Electromagnetismo Aplicado (Gema)Publicación Composición química y microestructura de la dentina de pacientes colombianos(2014-05-01) C. Montoya; Alexander Ossa, E.; Universidad EAFIT. Departamento de Ingeniería de Producción; Materiales de IngenieríaLa dentina es un tejido duro que ocupa la mayor porción del diente humano. En estudios preliminares realizados en la dentina de pacientes de Estados Unidos y Colombia se han encontrado ciertasdiferencias en cuanto al tamaño y distribucionPublicación Compressive Deformation Behaviour of Asphalt Mixtures(Association of Asphalt Paving Technologist, 2006-08-01) Ossa, Edgar Alexander; Universidad EAFIT. Departamento de Ingeniería de Producción; Materiales de IngenieríaPublicación Contribution of Root Canal Treatment to the Fracture Resistance of Dentin(Elsevier Inc., 2019-01-01) Yan W.; Montoya C.; Øilo M.; Ossa A.; Paranjpe A.; Zhang H.; Arola D.D.; Universidad EAFIT. Departamento de Ingeniería de Producción; Materiales de IngenieríaIntroduction: Although the strength and toughness of dentin decrease with age, no study has explored if restorative treatments are a contributing factor. Methods: Multiple extracted teeth were obtained from randomly selected donors and categorized according to donor age and prior root canal treatment. The microstructure and chemical composition of radicular dentin were evaluated using scanning electron microscopy and Raman spectroscopy, respectively, and the strength was evaluated in 4-point flexure to failure. Data were compared using the Student t test. Results: Dentin from the root canal–restored teeth exhibited significantly lower strength (P <.05) than tissue from age- and donor-matched unrestored tooth pairs. Although there was no significant difference in the mineral-to-collagen ratio between the 2 groups, dentin obtained from the root canal–treated teeth exhibited more extensive collagen cross-linking and lower tubule occlusion ratios than the unrestored tooth pairs. Conclusions: There is a decrease in the strength of radicular dentin with aging, but prior root canal treatment increases the extent of degradation. © 2018 American Association of EndodontistsPublicación Contributions of intermolecular bonding and lubrication to the mechanical behavior of a natural armor(ELSEVIER SCI LTD, 2020-01-01) Jiang, H.; Ghods, S.; Weller, E.; Waddell, S.; Ossa, E.A.; Yang, F.; Arola, D.; Universidad EAFIT. Departamento de Ingeniería de Producción; Materiales de IngenieríaAmong many dermal armors, fish scales have become a source of inspiration in the pursuit of “next-generation” structural materials. Although fish scales function in a hydrated environment, the role of water and intermolecular hydrogen bonding to their unique structural behavior has not been elucidated. Water molecules reside within and adjacent to the interpeptide locations of the collagen fibrils of the elasmodine and provide lubrication to the protein molecules during deformation. We evaluated the contributions of this lubrication and the intermolecular bonding to the mechanical behavior of elasmodine scales from the Black Carp (Mylopharyngodon piceus). Scales were exposed to polar solvents, followed by axial loading to failure and the deformation mechanisms were characterized via optical mechanics. Displacement of intermolecular water molecules by liquid polar solvents caused significant (p = 0.05) increases in stiffness, strength and toughness of the scales. Removal of this lubrication decreased the capacity for non-linear deformation and toughness, which results from the increased resistance to fibril rotations and sliding caused by molecular friction. The intermolecular lubrication is a key component of the “protecto-flexibility” of scales and these natural armors as a system; it can serve as an important component of biomimetic-driven designs for flexible armor systems. Statement of Significance: The natural armor of fish has become a topic of substantial scientific interest. Hydration is important to these materials as water molecules reside within the interpeptide locations of the collagen fibrils of the elasmodine and provide lubrication to the protein molecules during deformation. We explored the opportunity for tuning the mechanical behavior of scales as a model for next-generation engineering materials by adjusting the extent of hydrogen bonding with polar solvents and the corresponding interpeptide molecular lubrication. Removal of this lubrication decreased the capacity for non-linear deformation and toughness due to an increase in resistance to fibril rotations and sliding as imparted by molecular friction. We show that intermolecular lubrication is a key component of the “protecto-flexibility” of natural armors and it is an essential element of biomimetic approaches to develop flexible armor systems. © 2020 Acta Materialia Inc.Publicación Contributions of the layer topology and mineral content to the elastic modulus and strength of fish scales(ELSEVIER SCIENCE BV, 2018-12-01) Ossa, Edgar Alexander; Universidad EAFIT. Departamento de Ingeniería de Producción; Materiales de Ingeniería