Closed-form solutions for axially non-uniform Timoshenko beams and frames under static loading

dc.citation.journalTitleComposite Structureseng
dc.citation.volume337
dc.contributor.affiliationUniversidad EAFIT
dc.contributor.affiliationUniversity of Central Florida
dc.contributor.authorMolina-Villegas, Juan Camilo
dc.contributor.authorBallesteros Ortega, Jorge Eliecer
dc.contributor.authorBenítez Soto, Simón
dc.coverage.spatialMedellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
dc.creator.emailjmolina2@eafit.edu.co
dc.date.accessioned2025-01-08T20:12:21Z
dc.date.available2025-01-08T20:12:21Z
dc.date.issued2024-03-23
dc.description.abstractThis paper presents the Green’s Functions Stiffness Method (GFSM) for solving linear elastic static problems in arbitrary axially non-uniform Timoshenko beams and frames subjected to general external loads and bending moments. The GFSM is a mesh reduction method that seamlessly integrates elements from the Stiffness Method (SM), Finite Element Method (FEM), and Green’s Functions (GFs), resulting in a highly versatile methodology for structural analysis. It incorporates fundamental concepts such as stiffness matrices, shape functions, and fixed-end forces, in line with SM and FEM frameworks. Leveraging the capabilities of GFs, the method facilitates the derivation of closed-form solutions, addressing a gap in existing methods for analyzing non-uniform reticular structures which are typically limited to simple cases like single-span beams with specific axial variations and loading scenarios. The effectiveness of the GFSM is demonstrated through three practical examples, showcasing its applicability in analyzing non-uniform beams and plane frames, thereby broadening the scope of closed-form solutions for axially non-uniform Timoshenko structures.eng
dc.identifier.doi10.1016/j.compstruct.2024.118078
dc.identifier.issn1879-1085
dc.identifier.urihttps://hdl.handle.net/10784/34852
dc.language.isoeng
dc.publisherElseviereng
dc.publisher.departmentUniversidad EAFIT. Escuela de Ciencias Aplicadas e Ingenieria. Área Territorios y Ciudadesspa
dc.publisher.placeMedellínspa
dc.publisher.programGrupo de Investigación Mecánica Aplicadaspa
dc.relation.ispartofComposite Structures, Volume 337, 1 June 2024
dc.relation.isversionofhttps://www.sciencedirect.com/science/article/pii/S026382232400206X
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S026382232400206X
dc.rightsCopyright © 2024 Elsevier. All rights reserved.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesseng
dc.rights.localAcceso abiertospa
dc.subject.keywordAxially non-uniform Timoshenko beamseng
dc.subject.keywordClosed-form solutioneng
dc.subject.keywordGreen’s functionseng
dc.subject.keywordFinite element methodeng
dc.subject.keywordMesh reduction methodeng
dc.subject.keywordFramed structureseng
dc.subject.keywordComposite materialseng
dc.titleClosed-form solutions for axially non-uniform Timoshenko beams and frames under static loadingeng
dc.typeinfo:eu-repo/semantics/articleeng
dc.typearticleeng
dc.type.hasVersionpublishedVersioneng
dc.type.localArtículospa

Archivos

Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
1-s2.0-S026382232400206X-main.pdf
Tamaño:
1.49 MB
Formato:
Adobe Portable Document Format
Descripción:
Texto completo

Colecciones