Closed-form solutions for axially non-uniform Timoshenko beams and frames under static loading
dc.citation.journalTitle | Composite Structures | eng |
dc.citation.volume | 337 | |
dc.contributor.affiliation | Universidad EAFIT | |
dc.contributor.affiliation | University of Central Florida | |
dc.contributor.author | Molina-Villegas, Juan Camilo | |
dc.contributor.author | Ballesteros Ortega, Jorge Eliecer | |
dc.contributor.author | Benítez Soto, Simón | |
dc.coverage.spatial | Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees | |
dc.creator.email | jmolina2@eafit.edu.co | |
dc.date.accessioned | 2025-01-08T20:12:21Z | |
dc.date.available | 2025-01-08T20:12:21Z | |
dc.date.issued | 2024-03-23 | |
dc.description.abstract | This paper presents the Green’s Functions Stiffness Method (GFSM) for solving linear elastic static problems in arbitrary axially non-uniform Timoshenko beams and frames subjected to general external loads and bending moments. The GFSM is a mesh reduction method that seamlessly integrates elements from the Stiffness Method (SM), Finite Element Method (FEM), and Green’s Functions (GFs), resulting in a highly versatile methodology for structural analysis. It incorporates fundamental concepts such as stiffness matrices, shape functions, and fixed-end forces, in line with SM and FEM frameworks. Leveraging the capabilities of GFs, the method facilitates the derivation of closed-form solutions, addressing a gap in existing methods for analyzing non-uniform reticular structures which are typically limited to simple cases like single-span beams with specific axial variations and loading scenarios. The effectiveness of the GFSM is demonstrated through three practical examples, showcasing its applicability in analyzing non-uniform beams and plane frames, thereby broadening the scope of closed-form solutions for axially non-uniform Timoshenko structures. | eng |
dc.identifier.doi | 10.1016/j.compstruct.2024.118078 | |
dc.identifier.issn | 1879-1085 | |
dc.identifier.uri | https://hdl.handle.net/10784/34852 | |
dc.language.iso | eng | |
dc.publisher | Elsevier | eng |
dc.publisher.department | Universidad EAFIT. Escuela de Ciencias Aplicadas e Ingenieria. Área Territorios y Ciudades | spa |
dc.publisher.place | Medellín | spa |
dc.publisher.program | Grupo de Investigación Mecánica Aplicada | spa |
dc.relation.ispartof | Composite Structures, Volume 337, 1 June 2024 | |
dc.relation.isversionof | https://www.sciencedirect.com/science/article/pii/S026382232400206X | |
dc.relation.uri | https://www.sciencedirect.com/science/article/pii/S026382232400206X | |
dc.rights | Copyright © 2024 Elsevier. All rights reserved. | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | eng |
dc.rights.local | Acceso abierto | spa |
dc.subject.keyword | Axially non-uniform Timoshenko beams | eng |
dc.subject.keyword | Closed-form solution | eng |
dc.subject.keyword | Green’s functions | eng |
dc.subject.keyword | Finite element method | eng |
dc.subject.keyword | Mesh reduction method | eng |
dc.subject.keyword | Framed structures | eng |
dc.subject.keyword | Composite materials | eng |
dc.title | Closed-form solutions for axially non-uniform Timoshenko beams and frames under static loading | eng |
dc.type | info:eu-repo/semantics/article | eng |
dc.type | article | eng |
dc.type.hasVersion | publishedVersion | eng |
dc.type.local | Artículo | spa |
Archivos
Bloque original
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- 1-s2.0-S026382232400206X-main.pdf
- Tamaño:
- 1.49 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Texto completo