Documentos de conferencia
URI permanente para esta colección
Examinar
Examinando Documentos de conferencia por Título
Mostrando 1 - 20 de 45
Resultados por página
Opciones de ordenación
Publicación Academic synergy through integrated mechatronic projects(IEEE, 2018-01-01) Velasquez-Lopez, Alejandro; Rodriguez-Garcia, Alberto; Universidad EAFIT. Departamento de Ingeniería Mecánica; Mecatrónica y Diseño de MáquinasThis Innovative to Practice Work in Progress paper presents an approach to obtain synergy by implementing an integrated mechatronic project within a postgraduate program. Mechatronics has been a reference for synergetic integration of technology. However, synergy is obtained not only from technical issues, but through professional skills. Nevertheless, traditional education and industry standards focus only on the technical side. The study case is performed within the program Integrated Design of Technical Systems by implementing strategies such as integrated scheduling, integrated assessment and project proposal with application fields such as agriculture, robotics, health and mobility. This approach does not require additional credits for a project course, since the project lies underneath the courses. It has led to an increase of enrollment of students, which is significant during times when less engineers opt for further technical education.Ítem Adaptive architecture to support context-aware Collaborative Networked Virtual Surgical Simulators (CNVSS)(SPRINGER, 2014-01-01) Diaz, C.; Trefftz, H.; Quintero, L.; Acosta, D.; Srivastava, S.; Universidad EAFIT. Departamento de Ingeniería de Procesos; Desarrollo y Diseño de ProcesosStand-alone and networked surgical virtual reality based simulators have been proposed as means to train surgical skills with or without a supervisor nearby the student or trainee. However, surgical skills teaching in medicine schools and hospitals is changing, requiring the development of new tools to focus on: (i) importance of mentors role, (ii) teamwork skills and (iii) remote training support. For these reasons a surgical simulator should not only allow the training involving a student and an instructor that are located remotely, but also the collaborative training session involving a group of several students adopting different medical roles during the training session. Collaborative Networked Virtual Surgical Simulators (CNVSS) allow collaborative training of surgical procedures where remotely located users with different surgical roles can take part in a training session. Several works have addressed the issues related to the development of CNVSS using various strategies. To the best of our knowledge no one has focused on handling heterogeneity in collaborative surgical virtual environments. Handling heterogeneity in this type of collaborative sessions is important because not all remotely located users have homogeneous Internet connections, nor the same interaction devices and displays, nor the same computational resources, among other factors. Additionally, if heterogeneity is not handled properly, it will have an adverse impact on the performance of each user during the collaborative session. In this paper we describe the development of an adaptive architecture with the purpose of implementing a context-aware model for collaborative virtual surgical simulation in order to handle the heterogeneity involved in the collaboration session. © 2014 Springer International Publishing.Publicación Adicion de inteligencia de trabajo a un robot industrial de 6 y 1/2 EJES(International Institute of Informatics and Systemics, IIIS, 2014-01-01) Arango, I.D.; Hincapié, M.; Pineda, F.A.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Mecatrónica y Diseño de MáquinasPublicación An Innovation Model in Curriculum Design for Teaching Engineering at Universidad EAFIT(IEEE, 2014-01-01) Zea, Claudia M.; Rodriguez, Alberto; Bueno, Natalia A.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Mecatrónica y Diseño de MáquinasConstant changes in technology pose continuous challenges for higher education institutions that are training the engineers of the future. These changes are making it necessary to adapt the curriculum in order to develop the skills needed by the XXI century engineer. Moreover, instead of thinking in a large curriculum reform at a specific moment, it is necessary to define curriculum management processes that include change as a natural component of the process. In addition to these global trends, each institution has a particular context and thus, the analysis in each institution has unique characteristics, a common methodological approach, and a reference model that can be built as long as it is flexible enough to include that context. This paper describes a model developed for curriculum management inside the School of Engineering at Universidad EAFIT - Colombia. This model includes the institutional context and is based on a process approach defined by the Business Process Management (BPM) methodology. The model uses the Burlton Hexagon as a theoretical framework to identify organizational structure, strategies, policies, infrastructure, technology tools and human capital. It is also a mechanism for specifying curricular macro processes including the global and institutional context. The proposed model is based on three pillars: (a) scientific research in education, which promotes the use of the scientific method as a strategy to ensure an approach to problems based on evidence which allows the construction of educational innovation projects, (b) education engineering focused on engineering education, which transforms the learning by developing basic, professional, and transversal skills as well as those specific for an engineer of the XXI century, and (c) interactive educational communities, both face to face and virtual, as spaces for knowledge management that support collaborative working and experience-sharing, managed by its members working together promoting initiatives to develop educational innovation projects focused on specific topics, that answer questions related to teaching and learning needs. The formulation and development of educational innovation projects are the responses to different needs identified on specific courses that are transformed into research questions. These projects aim to renew the curriculum so that it dynamically evolves based on classroom experiences. Thus, the curriculum renewal is based on critical thinking about the problems found in engineering education. The use of the scientific method and the collaborative approach enables drawing solid conclusions based on the experimental results. The model proposes the formulation and development of innovative educational projects in which scientific research applied in education aims to transform teaching, academic and administrative practices. As consequence, curricular innovations that integrate learning objects and educational, methodological and assessment strategies, are developed by an interactive learning community composed by teachers. Finally, the results obtained by applying the model in some courses in the School of Engineering of Universidad EAFIT are presented. These results include reducing the drop-out rate of students, redefining admission and graduation profiles, and micro-curricular redesign based on competences using projects, among others.Publicación An innovation model in curriculum design for teaching engineering at universidad EAFIT(Institute of Electrical and Electronics Engineers Inc., 2015-01-01) Zea, C.M.; Rodriguez, A.; Bueno, N.A.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Mecatrónica y Diseño de MáquinasConstant changes in technology pose continuous challenges for higher education institutions that are training the engineers of the future. These changes are making it necessary to adapt the curriculum in order to develop the skills needed by the XXI century engineer. Moreover, instead of thinking in a large curriculum reform at a specific moment, it is necessary to define curriculum management processes that include change as a natural component of the process. In addition to these global trends, each institution has a particular context and thus, the analysis in each institution has unique characteristics, a common methodological approach, and a reference model that can be built as long as it is flexible enough to include that context. This paper describes a model developed for curriculum management inside the School of Engineering at Universidad EAFIT - Colombia. This model includes the institutional context and is based on a process approach defined by the Business Process Management (BPM) methodology. The model uses the Burlton Hexagon as a theoretical framework to identify organizational structure, strategies, policies, infrastructure, technology tools and human capital. It is also a mechanism for specifying curricular macro processes including the global and institutional context. The proposed model is based on three pillars: (a) scientific research in education, which promotes the use of the scientific method as a strategy to ensure an approach to problems based on evidence which allows the construction of educational innovation projects, (b) education engineering focused on engineering education, which transforms the learning by developing basic, professional, and transversal skills as well as those specific for an engineer of the XXI century, and (c) interactive educational communities, both face to face and virtual, as spaces for knowledge management that support collaborative working and experience-sharing, managed by its members working together promoting initiatives to develop educational innovation projects focused on specific topics, that answer questions related to teaching and learning needs. The formulation and development of educational innovation projects are the responses to different needs identified on specific courses that are transformed into research questions. These projects aim to renew the curriculum so that it dynamically evolves based on classroom experiences. Thus, the curriculum renewal is based on critical thinking about the problems found in engineering education. The use of the scientific method and the collaborative approach enables drawing solid conclusions based on the experimental results. The model proposes the formulation and development of innovative educational projects in which scientific research applied in education aims to transform teaching, academic and administrative practices. As consequence, curricular innovations that integrate learning objects and educational, methodological and assessment strategies, are developed by an interactive learning community composed by teachers. Finally, the results obtained by applying the model in some courses in the School of Engineering of Universidad EAFIT are presented. These results include reducing the drop-out rate of students, redefining admission and graduation profiles, and micro-curricular redesign based on competences using projects, among others. © 2014 IEEE.Publicación Analyzing sliding bifurcations on discontinuity boundary of Filippov systems(WORLD SCIENTIFIC AND ENGINEERING ACAD AND SOC, 2008-01-01) Arango, Ivan; Taborda, John Alexander; Universidad EAFIT. Departamento de Ingeniería Mecánica; Mecatrónica y Diseño de MáquinasIn this paper, we propose a novel method to analyze sliding bifurcations in discontinuous piecewise smooth autonomous systems (denominated Filippov systems) on the planar neighborhood of the discontinuity boundary (DB). We use a classification recently proposed of points and events on DB to characterize the one-parameter sliding bifurcations. For each parameter value, crossing and sliding segments on DB are determined by means of existence conditions of two crossing points (C), four non-singular sliding points (S) and thirty-five singular sliding points (T, V, Pi, Psi, Q or Phi). Boolean-valued functions are used to formulate these conditions based on geometric criterions. This method was proven with the full catalog of local bifurcations that it was proposed recently. A topological normal form is used as illustrative example of the method.Ítem Assessing the effectiveness of peer instruction in students' understanding of electric circuits concepts(AMER SOC ENGINEERING EDUCATION, 2019-01-01) Soto Perez R.A.; Ortega-Alvarez J.D.; Streveler R.A.; Universidad EAFIT. Departamento de Ingeniería de Procesos; Desarrollo y Diseño de ProcesosThis paper describes the implementation of an active learning strategy, called Peer Instruction, in an undergraduate electric circuit analysis course offered at a large public university in Colombia. Peer Instruction is an instructional approach that fosters students' collaboration to increase conceptual understanding. Data was collected from three sections of the course mentioned above. In two sections, students attended a traditional class format (51 students) while another section (15 students) implemented the Peer Instruction methodology. The research question driving this project was whether Peer Instruction would produce significantly higher learning gains than the traditional blackboard and chalk approach. A difference was determined using a quasi-experimental study comparing the learning gains of the students in the traditional sections (i.e., the control group) versus those of the students in the Peer Instruction section (i.e., the experimental group). The learning gains were measured by pre/post application of an adapted version of the DIRECT concept inventory which was translated into Spanish. Preliminary results suggest that the implementation of a Peer Instruction approach in an electric circuit analysis course improves the performance of students on the adapted version of the DIRECT test. © American Society for Engineering Education, 2019Ítem The challenges of assessing transformative learning: Lessons learned from an instructional design workshop for Colombian engineering faculty(Tempus Publications, 2018-01-01) Ortega-Alvarez, J.D.; Vieira, C.; Sanchez-Pena, M.; Streveler, R.A.; Universidad EAFIT. Departamento de Ingeniería de Procesos; Desarrollo y Diseño de ProcesosThe authors designed and delivered a workshop on Instructional Design for Colombian engineering faculty at three different universities. The workshop drew from the backwards design model and scholarly literature on engineering education. The participants were asked to assess the workshop using a pre-post survey with Likert-type items and open-ended questions. Results from the assessment of the first offering of the workshop suggested a change in participants’ perspectives that the instrument could not fully capture. A revised instrument used during the second offering allowed deeper insights into this change. Based on these results, the authors argue that a professional development program can transform faculty’s perspectives, particularly when it is aimed at helping faculty inform their teaching practice using evidence-based educational research. The assessment of such a program must, therefore, move from an incremental to a transformational notion of learning. The research question driving this work was: How can one assess the transformative learning of engineering faculty about instructional design? This experience with Colombian faculty suggests that a transformative learning framework can inform the assessment of participants’ learning in professional development programs for engineering faculty. Preliminary results of the application of this framework suggest that most workshop participants transitioned from a teacher-centered to a learner-centered conception of teaching. © 2018 TEMPUS Publications.Publicación Characterizing points on discontinuity boundary of Filippov systems(ACTA Press, 2008-01-01) Arango, I.; Taborda, J.A.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Mecatrónica y Diseño de MáquinasIn this paper, we presented a basic methodology to understand the behavior of discontinuous piecewise smooth autonomous systems (denominated Filippov systems) in the planar neighborhood of the discontinuity boundary (DB). This methodology is useful in detection of nonsmooth bifurcations in Filippov systems. We propose a classification of the points and events on DB. This classification is more complete in comparison with the reported papers previously. The lines and the points are characterized with didactic symbols and the exclusive conditions for their existence based in geometric criterions. Boolean-valued functions are used to formulate the conditions. An illustrative example with a friction oscillator is presented.Publicación Correlation between procedural and conceptual test in a statics course(Institute of Electrical and Electronics Engineers Inc., 2019-01-01) Garcia C.A.R.; Perez J.L.B.; Ochoa J.L.R.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Mecatrónica y Diseño de MáquinasDue to poor performance in Statics at Eafit University, since 2012 the Mechanical Engineering department implemented a virtual tool for the training and assessment of Statics course. Although the implementation led to better performance in the Statics course, students were still showing lack of comprehension of the basic concepts underlying the subject. The department applied a Concept Inventory test to 195 students from the second semester of 2017 in order to check if there was a correlation between the grades obtained in the class examinations and the performance in a conceptual test of Statics. The Concept Inventory was applied one week before the final examination and it was held inside the University facilities. The students were monitored all the time. For the course examinations were taken only three out of the four partial exams, they were computed and then compared to the results of the concept inventory. The results show that almost all the students with the highest grades in the class performed above the mean in the Concept Inventory. The overall mean for the conceptual test was 9.27 and the standard deviation was 5.28. The course grades were discriminated by career and an Analysis of Variance was conducted to determine if there were significant differences among the groups. A correlation analysis suggests that there is not a strong correlation between the course grades and the concept inventory results. One possible explanation for this can be due to the fact that the regular teaching method for these kind of basic courses in engineering in the University is merely procedural and problem-solving oriented, conceptual approaches are often neglected in both teaching and assessment. © 2018 IEEE.Publicación CORRELATION BETWEEN PROCEDURAL AND CONCEPTUAL TEST IN A STATICS COURSE(IEEE, 2018-01-01) Restrepo Garcia, Carlos Andres; Barbosa Perez, Jaime Leonardo; Restrepo Ochoa, Jorge Luis; Universidad EAFIT. Departamento de Ingeniería Mecánica; Mecatrónica y Diseño de MáquinasDue to poor performance in Statics at Eafit University, since 2012 the Mechanical Engineering department implemented a virtual tool for the training and assessment of Statics course. Although the implementation led to better performance in the Statics course, students were still showing lack of comprehension of the basic concepts underlying the subject. The department applied a Concept Inventory test to 195 students from the second semester of 2017 in order to check if there was a correlation between the grades obtained in the class examinations and the performance in a conceptual test of Statics. The Concept Inventory was applied one week before the final examination and it was held inside the University facilities. The students were monitored all the time. For the course examinations were taken only three out of the four partial exams, they were computed and then compared to the results of the concept inventory. The results show that almost all the students with the highest grades in the class performed above the mean in the Concept Inventory. The overall mean for the conceptual test was 9.27 and the standard deviation was 5.28. The course grades were discriminated by career and an Analysis of Variance was conducted to determine if there were significant differences among the groups. A correlation analysis suggests that there is not a strong correlation between the course grades and the concept inventory results. One possible explanation for this can be due to the fact that the regular teaching method for these kind of basic courses in engineering in the University is merely procedural and problem-solving oriented, conceptual approaches are often neglected in both teaching and assessment.Publicación Creativity and job tension in experiential learning(Institute of Electrical and Electronics Engineers Inc., 2019-01-01) Roman-Calderon J.P.; Acevedo-Jaramillo M.E.; Escalante J.E.; Arias A.; Aguilar-Barrientos S.; Barbosa J.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Mecatrónica y Diseño de MáquinasThis work-in-progress research paper presents a study on employability skills. Employability or soft skills refer to personality traits, attitudes and behavior that are complementary to professional knowledge. These skills are part of a series of competencies that are intertwined with the engineer's technical work [1]. A high percentage of job success depends on employability skills [2]. A gap exists between the attributes of engineering graduates and company requirements [3]. Experiential learning can develop a myriad of skills required by the workplace. Universidad EAFIT, located in Medellin (Colombia), has developed an experiential learning program called KRATOS. KRATOS was sent an invitation to participate in an international competition that implied designing and building a solar/electric powered vehicle. Think creatively is a competency that is important for engineering practice across areas, disciplines and countries [1]. Although student competitions that include design activities may enhance a passion for engineering, they can also have negative emotional consequences [4] (i.e. job tension). Using the structural equation modeling technique, the authors of this study analyzed the responses of 334 undergraduate students. The results of the study indicate that job tension significantly decreased over time, whereas no significant change was detected in terms of creativity. © 2018 IEEE.Publicación Creativity and job tension in experiential learning(IEEE, 2018-01-01) Pablo Roman-Calderon, Juan; Esteban Acevedo-Jaramillo, Manuel; Esteban Escalante, Juan; Arias, Alejandro; Aguilar-Barrientos, Sara; Barbosa, Jaime; Universidad EAFIT. Departamento de Ingeniería Mecánica; Mecatrónica y Diseño de MáquinasThis work-in-progress research paper presents a study on employability skills. Employability or soft skills refer to personality traits, attitudes and behavior that are complementary to professional knowledge. These skills are part of a series of competencies that are intertwined with the engineer's technical work [1]. A high percentage of job success depends on employability skills [2]. A gap exists between the attributes of engineering graduates and company requirements [3]. Experiential learning can develop a myriad of skills required by the workplace. Universidad EAFIT, located in Medellin (Colombia), has developed an experiential learning program called KRATOS. KRATOS was sent an invitation to participate in an international competition that implied designing and building a solar/ electric powered vehicle. Think creatively is a competency that is important for engineering practice across areas, disciplines and countries [1]. Although student competitions that include design activities may enhance a passion for engineering, they can also have negative emotional consequences [4] (i.e. job tension). Using the structural equation modeling technique, the authors of this study analyzed the responses of 334 undergraduate students. The results of the study indicate that job tension significantly decreased over time, whereas no significant change was detected in terms of creativity.Publicación Design of a competences based teaching model supported in the integration of repositories and LMS platforms for the automatic control of processes course(Institute of Electrical and Electronics Engineers Inc., 2015-01-01) Gomez, G.I.C.; Diaz, T.A.G.; Zea, R.C.M.; Zapata, R.L.F.; Universidad EAFIT. Departamento de Ingeniería de Producción; Ingeniería, Energía, Exergía y Sostenibilidad (IEXS)The Automatic Process Control course is part of the Mechanical Engineering, Process Engineering and Production Engineering programs, offered by EAFIT University (Medellin, Colombia). This course has had a number of reforms in recent years, from two academic spaces to one that contains all the content and features them from theoretical and practical components. With this transformation, was generated the need to reduce the time commitment to each of the thematic, causing learning issues in students. For this reason, we have proposed a new reform in the course through the implementation of a content management model based on competences and supported by the integration of repositories and LMS platforms. This model seeks to train students in the skills defined by the courses and because of this, it is important that the learning process provide mechanisms to validate the skill level of each student, taking into account the outcome of the validation should correspond directly to the skills acquired in the training process. To support this model, there are technological tools as platforms for learning management and learning object repositories that support the online teaching and learning processes, and support the use of standards, generating interoperability, reusability, adaptability and scalability content. © 2014 IEEE.Publicación Design of a competences based teaching model supported in the integration of repositories and LMS platforms for the Automatic Control of Processes course.(IEEE, 2014-01-01) Gomez G, Isabel Cristina; Diaz T, Adalberto Gabriel; Zea R, Claudia Maria; Zapata R, Luis Felipe; Universidad EAFIT. Departamento de Ingeniería de Producción; Ingeniería, Energía, Exergía y Sostenibilidad (IEXS)The Automatic Process Control course is part of the Mechanical Engineering, Process Engineering and Production Engineering programs, offered by EAFIT University (Medellin, Colombia). This course has had a number of reforms in recent years, from two academic spaces to one that contains all the content and features them from theoretical and practical components. With this transformation, was generated the need to reduce the time commitment to each of the thematic, causing learning issues in students. For this reason, we have proposed a new reform in the course through the implementation of a content management model based on competences and supported by the integration of repositories and LMS platforms. This model seeks to train students in the skills defined by the courses and because of this, it is important that the learning process provide mechanisms to validate the skill level of each student, taking into account the outcome of the validation should correspond directly to the skills acquired in the training process. To support this model, there are technological tools as platforms for learning management and learning object repositories that support the online teaching and learning processes, and support the use of standards, generating interoperability, reusability, adaptability and scalability content.Publicación Design of a new fully compliant translational joint via straight-line motion mechanism based method(American Society of Mechanical Engineers (ASME), 2019-01-01) García S.C.; Gallego-Sanchez J.A.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Mecatrónica y Diseño de MáquinasA Compliant Translational Joint (CTJ) is designed via Straight-Line Motion Mechanism Method. The designed CTJ is based on the Pseudo-Rigid-Body-Model (PRBM) of a modified Scott-Russell Mechanism. The precision of the straight-line motion of the rigid-body mechanism adjusts to a straight-line to a 99.6% while the compliant version adjusts to a 99.9%. The novelty of the design is given by the way the CTJ is designed, the performance of the CTJ is achieved by mirroring the mechanism about an axis tangent to the path of the mechanism and that passes through the initial position of the coupler point at the symmetry axis of the path. The CTJ motion is predicted by the PRBM. The force-displacement relations and the frequency modes of the CTJ are analyzed using finite element analysis (FEA). Copyright © 2019 ASME.Publicación DESIGN OF A NEW FULLY COMPLIANT TRANSLATIONAL JOINT VIA STRAIGHT-LINE MOTION MECHANISM BASED METHOD(American Society of Mechanical Engineers (ASME), 2020-01-01) Garcia, Sonia C.; Gallego-Sanchez, Juan A.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Mecatrónica y Diseño de MáquinasA Compliant Translational Joint (CTJ) is designed via Straight-Line Motion Mechanism Method. The designed CTJ is based on the Pseudo-Rigid-Body-Model (PRBM) of a modified Scott-Russell Mechanism. The precision of the straight-line motion of the rigid-body mechanism adjusts to a straight-line to a 99.6% while the compliant version adjusts to a 99.9%. The novelty of the design is given by the way the CTJ is designed, the performance of the CTJ is achieved by mirroring the mechanism about an axis tangent to the path of the mechanism and that passes through the initial position of the coupler point at the symmetry axis of the path. The CTJ motion is predicted by the PRBM. The force -displacement relations and the frequency modes of the CTJ are analyzed using finite element analysis (FEA).Ítem Design of computer experiments applied to modeling compliant mechanisms(DELFT UNIV TECHNOLOGY, FAC INDUST DESIGN ENG, 2010-01-01) Arango, D.R.; Acosta, D.A.; Durango, S.; Ruiz, O.E.; Universidad EAFIT. Departamento de Ingeniería de Procesos; Desarrollo y Diseño de ProcesosThis article discusses a procedure for force-displacement modeling compliant mechanisms by using a design of computer experiments methodology. This approach produces a force-displacement metamodel that is suited for real-time control of compliant mechanisms. The term metamodel is used to represent a simplified and efficient mathematical model of unknown phenomenon or computer codes. The metamodeling of compliant mechanisms is performed from virtual experiments based on factorial and space filling design of experiments. The procedure is used to modeling the quasi-static behavior of the HexFlex compliant mechanism. The HexFlex is a parallel compliant mechanism for nanomanipulating that allows six degrees of freedom of its moving stage. The metamodel of the HexFlex is performed from virtual experiments by the Finite Element Method (FEM). The obtained metamodel for the HexFlex is linear for the movement range of the mechanism. Simulations of the metamodel were conducted, finding good accuracy with respect to the virtual experiments. © Organizing Committee of TMCE 2010 Symposium.Publicación Detecting Sliding Areas in Three-Dimensional Filippov Systems using an Integration-Free Method(WORLD SCIENTIFIC AND ENGINEERING ACAD AND SOC, 2008-01-01) Arango, Ivan; Taborda, John Alexander; Universidad EAFIT. Departamento de Ingeniería Mecánica; Mecatrónica y Diseño de MáquinasIn this paper, we detect sliding areas in three-dimensional (3D) Filippov systems using an integration-free method denominated Singular Point Tracking (SPT). Many physical applications in engineering can be modelled as Filippov systems. Sliding dynamics due to nonsmooth phenomena as friction, hysteresis or switching are inherent to Filippov systems. The analysis of sliding dynamics has many mathematical and numerical difficulties. Several well-known numerical problems can be avoid using integration-free methods. In this paper, we extend the SPT method to 3D Filippov systems. In comparison with the 2D case, the evaluation of the vector fields on the discontinuity boundary (DB) should be reformulated and new dynamics on DB should be characterized.Publicación DEVELOPMENT OF AN AUTOMATIC PLOTTER FOR GENERATING EXERCISES FOR STATICS COURSE IN ENGINEERING(IATED-INT ASSOC TECHNOLOGY EDUCATION A& DEVELOPMENT, 2016-01-01) Restrepo Ochoa, Jorge Luis; Barbosa Perez, Jaime Leonardo; Arenas Berrio, Julian; Universidad EAFIT. Departamento de Ingeniería Mecánica; Mecatrónica y Diseño de MáquinasIn the virtual platform for Statics course of Engineering School at EAFIT University it was implemented an automatic plotter for generating exercises to study truss type structures and beams in civil, mechanical and production engineering. Through graphics changes, range of variables and requested questions, the student is provided with different exercises each time that they log in to the platform, achieving the personalization in the learning and evaluation process. The plotters for the structures are developed in JAVA language, and the questions generated are converted into a compatible format with the management learning system MOODLE. Since 2012, the engineering students' population who have enrolled the Statics course is 1909 and all of them have solved exercises generated with automatic plotters. From the design of an automatic generator an unlimited questions bank is obtained to implement in the virtual platform, it allows to get security when applying evaluation tests due to the fact that each person solves a different question. The present study shows the design and programming methodology used to make plotters so it can be extended to others virtual environments in basic sciences. Future works consists in making automatic generators that allow to define difficulty levels to guide the students in a progressive study in the course topics.
- «
- 1 (current)
- 2
- 3
- »