Logotipo del repositorio
  • English
  • Español
  • Français
  • Português
  • Iniciar sesión
    ¿Has olvidado tu contraseña?
Logotipo del repositorio
  • Comunidades
  • Listar por
  • English
  • Español
  • Français
  • Português
  • Iniciar sesión
    ¿Has olvidado tu contraseña?
  1. Inicio
  2. Examinar por materia

Examinando por Materia "Random Forest"

Mostrando 1 - 8 de 8
Resultados por página
Opciones de ordenación
  • No hay miniatura disponible
    Ítem
    Análisis predictivo del riesgo de default en microcrédito un enfoque de machine learning en sector financiero
    (Universidad EAFIT, 2024) Mendoza Trillos, Laura; Suárez Sierra, Biviana Marcela
  • No hay miniatura disponible
    Publicación
    Aplicación de modelos predictivos tradicionales y de machine learning para evaluar la insolvencia en el sector salud de Colombia
    (Universidad EAFIT, 2025) Girón Ocampo, César Eduardo; Mercado Vargas, Luis Fernando; Cruz Castañeda, Vivian; Álvarez Franco, Pilar Beatriz
  • No hay miniatura disponible
    Publicación
    Optimización de portafolios de inversión en el contexto de Big Data : integrando aprendizaje automático y técnicas de descomposición espectral
    (Universidad EAFIT, 2025) Hernández Slait, Jhon Jairo; Almonacid Hurtado, Paula María
  • No hay miniatura disponible
    Ítem
    Predicción de deserción de clientes en el mercado de seguros de transporte de carga en Estados Unidos mediante técnicas de Machine Learning : un caso de estudio
    (Universidad EAFIT, 2024) Uribe Durango, Víctor Ricardo; Almonacid Hurtado, Paula María
  • No hay miniatura disponible
    Ítem
    Predicción del precio del oro en el mercado spot y el tipo de cambio USD–COP para la optimización del rango de cobertura en derivados de las compañías exportadoras del sector minero
    (Universidad EAFIT, 2024) Gallego Panesso, Cristian Alexander; Almonacid Hurtado, Paula María
    This study addresses the implementation of various time series regression and machine learning models, such as: ARIMA, ARIMAX, SARIMA and Random Forests with the objective of accurately predicting the price of gold in the spot market and the USD–COP exchange rate. Precision in these predictions is crucial for export companies in the mining sector, as it allows them to establish optimal coverage ranges in the use of financial derivatives. Throughout the study, different machine learning algorithms were evaluated and compared, selecting those that provided the most accurate and consistent results. The findings offer a valuable tool for financial risk management and strategic decision making in the context of gold price volatility and exchange rate fluctuations. At the end of the study, it is indicated that the ARIMAX Rolling Forecast model applied in a parameterization (1,1,0) was the most accurate and consistent model over time for the price forecasts of both assets.
  • No hay miniatura disponible
    Publicación
    Predicción dinámica del valor del flete de mercado para vehículos 3s3 del puerto de Buenaventura a Bogotá : un modelo integrado con variables exógenas económicas y del sector logístico
    (Universidad EAFIT, 2025) Vélez Medina, Camilo Alejandro; García Vargas, Johan Felipe
    Logistics, especially road transportation as a fundamental part of the supply chain, directly impacts the costs and availability of products in cities. This project develops a predictive model to estimate the market value of freight transportation for 3S3-type vehicles from the port of Buenaventura, Colombia, to Bogotá, Colombia. The variable of interest, referred to as FP_mean, corresponds to the daily average freight production cost. The innovation of the model lies in its ability to integrate critical exogenous variables, such as Brent crude oil prices, the exchange rate of the dollar, sector-specific factors collected in the SICE TAC (fuel, tolls, tires, lubricants, filters, maintenance, personnel), RNDC (National Road Cargo Dispatch Registry), and the arrival of ships at the port with their respective types of cargo. Multiple advanced modeling approaches were evaluated, including ARIMA, SARIMA, Random Forest, and LSTM, with the Random Forest model incorporating exogenous variables (random_forest_exogen) standing out for its superior performance, achieving an RMSE of 211,395.42 and a MAPE of 3.20%, making it the most accurate for estimating FP_mean. Additionally, the LSTM and SARIMA models also demonstrated competitive results, striking a balance between accuracy and stability across various scenarios. These findings highlight the importance of combining advanced machine learning techniques with domain expertise in logistics.
  • No hay miniatura disponible
    Ítem
    The random forest machine learning model performs better in predicting drug repositioning using networks : systematic review and meta-analysis
    (Universidad EAFIT, 2024) García Marín, Darlyn Juranny; García Zea, Jerson Alexander; García Zea, Jerson Alexander
  • No hay miniatura disponible
    Publicación
    Transferencias monetarias y acceso a crédito : el caso del programa Ingreso Solidario en Colombia
    (Universidad EAFIT, 2024) Betancur Téllez, Sebastián; Álvarez Franco, Pilar Beatriz; Cruz Castañeda, Vivian

Vigilada Mineducación

Universidad con Acreditación Institucional hasta 2026 - Resolución MEN 2158 de 2018

Software DSpace copyright © 2002-2025 LYRASIS

  • Configuración de cookies
  • Enviar Sugerencias