Are neural networks able to forecast nonlinear time series with moving average components?
dc.citation.journalTitle | Ieee Latin America Transactions | eng |
dc.contributor.author | Cogollo, M.R. | |
dc.contributor.author | Velásquez, J.D. | |
dc.contributor.department | Universidad EAFIT. Escuela de Ciencias | spa |
dc.contributor.researchgroup | Modelado Matemático | spa |
dc.date.accessioned | 2021-04-12T14:07:10Z | |
dc.date.available | 2021-04-12T14:07:10Z | |
dc.date.issued | 2015-07-01 | |
dc.description.abstract | In nonlinear time series forecasting, neural networks are interpreted as a nonlinear autoregressive models because they take as inputs the previous values of the time series. However, the use of neural networks to forecast nonlinear time series with moving components is an issue usually omitted in the literature. In this article, we investigate the use of traditional neural networks for forecasting nonlinear time series with moving average components and we demonstrate the necessity of formulating new neural networks to adequately forecast this class of time series. Experimentally we show that traditional neural networks are not able to capture all the behavior of nonlinear time series with moving average components, which leads them to have a low capacity of forecast. © 2015 IEEE. | eng |
dc.identifier | https://eafit.fundanetsuite.com/Publicaciones/ProdCientif/PublicacionFrw.aspx?id=1758 | |
dc.identifier.doi | 10.1109/TLA.2015.7273790 | |
dc.identifier.issn | 15480992 | |
dc.identifier.other | WOS;000362037700036 | |
dc.identifier.other | SCOPUS;2-s2.0-84942877476 | |
dc.identifier.uri | http://hdl.handle.net/10784/27761 | |
dc.language.iso | spa | eng |
dc.publisher | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC | |
dc.relation.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-84942877476&doi=10.1109%2fTLA.2015.7273790&partnerID=40&md5=651d4138646615a07d04f255d250bd09 | |
dc.rights | https://v2.sherpa.ac.uk/id/publication/issn/1548-0992 | |
dc.source | Ieee Latin America Transactions | |
dc.subject.keyword | Forecasting | eng |
dc.subject.keyword | Neural networks | eng |
dc.subject.keyword | Moving averages | eng |
dc.subject.keyword | Moving components | eng |
dc.subject.keyword | Nonlinear autoregressive model | eng |
dc.subject.keyword | Nonlinear time series | eng |
dc.subject.keyword | Time series | eng |
dc.title | Are neural networks able to forecast nonlinear time series with moving average components? | eng |
dc.type | article | eng |
dc.type | info:eu-repo/semantics/article | eng |
dc.type | info:eu-repo/semantics/publishedVersion | eng |
dc.type | publishedVersion | eng |
dc.type.local | Artículo | spa |
Archivos
Bloque original
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- Are_neural_networks_able_to_forecast_nonlinear_time_series_with_moving_average_components.pdf
- Tamaño:
- 777.69 KB
- Formato:
- Adobe Portable Document Format
- Descripción: