Solución de la ecuación de Poisson de Energía para problemas de transferencia de calor en 2D y determinación de los parámetros de mejor desempeño utilizando el método de Colocación Local Directo con RBF (LDRBFCM)
dc.contributor.advisor | Estrada Ramírez, Ómar Augusto | |
dc.contributor.author | Ospina Muñóz, Walter Antonio | |
dc.coverage.spatial | Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees | eng |
dc.creator.degree | Magíster en Ingeniería | spa |
dc.creator.email | jherre23@eafit.edu.co | spa |
dc.date.accessioned | 2015-03-16T22:16:43Z | |
dc.date.available | 2015-03-16T22:16:43Z | |
dc.date.issued | 2014 | |
dc.description.abstract | En este trabajo se soluciona el problema de transferencia de calor en 2D y se determinan los parámetros de mejor desempeño utilizando el método de colocación local directo con funciones de base radial (LDRBFCM) -- Para ello se propone la evaluación del término difusivo de la ecuación de energía usando dos casos: (1) Problema con condiciones de frontera Dirichlet; (2) problema con condiciones de frontera Dirichlet, Neumann y Robin (benchmark NAFEMS) -- El estudio realizado busca determinar el mejor funcionamiento del método numérico para: (1) Diferentes funciones de base radial (RBFs); (2) diferentes distribuciones de puntos de colocación; (3) diferentes densidades de puntos de colocación (H) para cada distribución; (4) diferente número de puntos colocación por dominio (N) para cada distribución y densidad de puntos; (5) diferentes valores del parámetro libre c de la función de base radial Multicuadric; (6) y en el caso de benchmark NAFEMS con condiciones de frontera Dirichlet, Neumann y Robin, la utilización de puntos fantasmas para la aproximación de derivadas en la frontera -- Para los dos casos tratados en este trabajo, en términos generales, la RBF Multicuadric fue la que presentó mejor comportamiento y todo lo que se describe a continuación será con referencia a ella -- Se encontró además que el parámetro libre con mejor desempeño fue c = 100r0 -- Para el primer caso se encontró: (1) -- La solución del problema utilizando la distribución rectangular es, lejos, más exacta que la reportada cuando se utilizan métodos globales; (2) en cuanto al costo computacional el método LDRBFCM es más eficiente en términos de menos requisitos de memoria y menos esfuerzos computacionales; (3) -- El tiempo de cálculo computacional empleado por el método local es menor que el empleado por métodos globales -- Para el segundo caso se encontró: (1) aunque la implementación del DOE (Diseño de Experimento) numérico es más sencillo sin la utilización de puntos fantasmas estos se hacen necesarios, con ellos se logra una convergencia más estable de la solución, un error más bajo y la posibilidad de trabajar con una distribución de puntos aleatoria para geometrías más complicadas que la utilizada en este trabajo; (2) en cuanto al costo computacional el método LDRBFCM también es más eficiente para aproximar derivadas cuando hay nodos en la frontera en términos de menos requisitos de memoria y menos esfuerzos computacionales que los métodos globales | spa |
dc.identifier.uri | http://hdl.handle.net/10784/5102 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad EAFIT | spa |
dc.publisher.department | Escuela de Ingeniería | spa |
dc.publisher.program | Maestría en Ingeniería | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | eng |
dc.rights.local | Acceso abierto | spa |
dc.subject | Puntos fantasmas | spa |
dc.subject | Método Meshless | spa |
dc.subject | Función de Base Radial (RBF) | spa |
dc.subject | Método de colocación directo (DRBFN) | spa |
dc.subject | Método de colocación local directo (LDRBFCM) | spa |
dc.subject | Condiciones de frontera Dirichlet | spa |
dc.subject.keyword | Heat - Transmission | spa |
dc.subject.keyword | Numerical analysis | spa |
dc.subject.keyword | Finite element method | spa |
dc.subject.keyword | Simulation methods | spa |
dc.subject.keyword | Boundary value problems | spa |
dc.subject.keyword | Differential equations | spa |
dc.subject.keyword | Poisson processes | spa |
dc.subject.lemb | TRANSMISIÓN DEL CALOR | spa |
dc.subject.lemb | ANÁLISIS NUMÉRICO | spa |
dc.subject.lemb | MÉTODO DE ELEMENTOS FINITOS | spa |
dc.subject.lemb | MÉTODOS DE SIMULACIÓN | spa |
dc.subject.lemb | PROBLEMAS DE VALORES DE FRONTERA | spa |
dc.subject.lemb | ECUACIONES DIFERENCIALES | spa |
dc.subject.lemb | PROCESOS DE POISSON | spa |
dc.title | Solución de la ecuación de Poisson de Energía para problemas de transferencia de calor en 2D y determinación de los parámetros de mejor desempeño utilizando el método de Colocación Local Directo con RBF (LDRBFCM) | spa |
dc.type | info:eu-repo/semantics/masterThesis | |
dc.type.hasVersion | acceptedVersion | eng |
dc.type.local | Tesis de Maestría | spa |
Archivos
Bloque original
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- WalterOspina_2014.pdf
- Tamaño:
- 2.16 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Texto Completo
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 2.5 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: