Finite difference calculations of permeability in large domains in a wide porosity range.

dc.citation.epage1054spa
dc.citation.issue8spa
dc.citation.journalTitleArchive of Applied Mechanicseng
dc.citation.journalTitleArchive of Applied Mechanicsspa
dc.citation.spage1043spa
dc.citation.volume85spa
dc.contributor.authorOsorno, Maria
dc.contributor.authorUribe, David
dc.contributor.authorRuiz Salguero, Oscar
dc.contributor.authorHolger, Steeb
dc.contributor.departmentUniversidad EAFIT. Departamento de Ingeniería Mecánicaspa
dc.contributor.researchgroupLaboratorio CAD/CAM/CAEspa
dc.date.accessioned2016-09-26T19:50:39Z
dc.date.available2016-09-26T19:50:39Z
dc.date.issued2015-08
dc.description.abstractDetermining effective hydraulic, thermal, mechanical and electrical properties of porous materials by means of classical physical experiments is often time-consuming and expensive. Thus, accurate numerical calculations of material properties are of increasing interest in geophysical, manufacturing, bio-mechanical and environmental applications, among other fields. Characteristic material properties (e.g. intrinsic permeability, thermal conductivity and elastic moduli) depend on morphological details on the porescale such as shape and size of pores and pore throats or cracks. To obtain reliable predictions of these properties it is necessary to perform numerical analyses of sufficiently large unit cells. Such representative volume elements require optimized numerical simulation techniques. Current state-of-the-art simulation tools to calculate effective permeabilities of porous materials are based on various methods, e.g. lattice Boltzmann, finite volumes or explicit jump Stokes methods. All approaches still have limitations in the maximum size of the simulation domain. In response to these deficits of the well-established methods we propose an efficient and reliable numerical method which allows to calculate intrinsic permeabilities directly from voxel-based data obtained from 3D imaging techniques like X-ray microtomography. We present a modelling framework based on a parallel finite differences solver, allowing the calculation of large domains with relative low computing requirements (i.e. desktop computers). The presented method is validated in a diverse selection of materials, obtaining accurate results for a large range of porosities, wider than the ranges previously reported. Ongoing work includes the estimation of other effective properties of porous media.eng
dc.identifier.doi10.1007/s00419-015-1025-4
dc.identifier.issn0939-1533
dc.identifier.urihttp://hdl.handle.net/10784/9205
dc.language.isoengeng
dc.publisherSpringer Berlin Heidelbergspa
dc.relation.ispartofArchive of Applied Mechanics, Volume 85, Issue 8, pp 1043-1054spa
dc.relation.urihttp://link.springer.com/article/10.1007/s00419-015-1025-4
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.rights.localAcceso cerradospa
dc.subject.keywordEffective permeabilityspa
dc.subject.keywordPorous materialsspa
dc.subject.keywordDigital rock physicsspa
dc.subject.keywordEffective permeabilityeng
dc.subject.keywordPorous materialseng
dc.subject.keywordDigital rock physicseng
dc.titleFinite difference calculations of permeability in large domains in a wide porosity range.eng
dc.typeinfo:eu-repo/semantics/articleeng
dc.typearticleeng
dc.typeinfo:eu-repo/semantics/publishedVersioneng
dc.typepublishedVersioneng
dc.type.localArtículospa

Archivos

Bloque original
Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
Finite-difference-calculations.html
Tamaño:
275 B
Formato:
Hypertext Markup Language
Descripción:
No hay miniatura disponible
Nombre:
Finite-difference-calculations.pdf
Tamaño:
186.99 KB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.5 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones