Evaluation of power generation potential of cellulose microfibrils and onion skin-based bio-piezoelectric nanogenerators

dc.contributor.advisorCastaño Cano, Davinsonspa
dc.contributor.authorBotín Sanabria, Juan Camilo
dc.coverage.spatialMedellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degreeseng
dc.creator.degreeIngeniero de Procesosspa
dc.creator.emailjbotins@eafit.edu.cospa
dc.date.accessioned2020-03-02T17:56:06Z
dc.date.available2020-03-02T17:56:06Z
dc.date.issued2019
dc.description.abstractIt is highly desirable for new nanosystems and nanodevices to be self-powered for applications in biomedical science, sensing, robotics and personal electronics. As new trends require these devices to be downsized and incorporated in remote and hard to reach locations the challenge to develop new technologies that allow autonomous, maintenance-free and continuous supply of energy is great. Over the last decade researchers have found ways to harness ambient energy from mechanical vibrations to develop self-powered devices. The present research reports the fabrication of two bio-piezoelectric generators using cellulose as biomaterial in two distinct configurations, as well as commonly used materials in a simple manufacturing process. Cellulose microfibrils, a disoriented structure, obtained from cotton wads was mixed with silicone to obtain an CMFPNG, while onion skin, a more oriented cellulose structure, was left untreated or naked to fabricate a NOSBPNG. The chemical and physical differences where evaluated using Fourier-transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM), the abundance of H-boding groups available in the onion skin structure present an interesting proposition for a high performance piezoelectric material, while the simpler an disoriented fashion on CMFs is less likely to perform equally. The self-orientation of PNG using onion skin without chemical treatment and no sputtering for the formation of the electrode generate an output voltage up until 3.26 V and store 0.395 V in a 4.7 μF capacitor, resulting in a power storage of 1.25 μJ, making it a viable material for the construction of smart devices such as PNG. CMFPNG results were not conclusive, hence it is suggested the present methods are not the adequate for this material. However important factors to consider are presented for future research. Nevertheless the results of NOSBPNG support the use of onion skin as a self-oriented waste material for the construction of new smart bio-materials.spa
dc.identifier.ddc664.024 B749
dc.identifier.urihttp://hdl.handle.net/10784/15894
dc.language.isospaspa
dc.publisherUniversidad EAFITspa
dc.publisher.departmentEscuela de Ingeniería. Departamento de Ingeniería Procesosspa
dc.publisher.placeMedellínspa
dc.publisher.programIngeniería de Procesosspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.localAcceso abiertospa
dc.subjectMicrofibraspa
dc.subjectBiopiezasspa
dc.subjectBiomaterialspa
dc.subjectMicrofibrillasspa
dc.subjectPiel de cebollaspa
dc.subjectEspectroscopiospa
dc.subject.lembINDUSTRIA DE PRODUCTOS VEGETALESspa
dc.subject.lembCELULOSAspa
dc.subject.lembINDUSTRIA DE LA CELULOSAspa
dc.subject.lembFIBRA DE RESIDUO DE ALGODÓNspa
dc.titleEvaluation of power generation potential of cellulose microfibrils and onion skin-based bio-piezoelectric nanogeneratorsspa
dc.typebachelorThesiseng
dc.typeinfo:eu-repo/semantics/bachelorThesis
dc.type.hasVersionacceptedVersioneng
dc.type.localTrabajo de gradospa

Archivos

Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
JuanCamilo_BotinSanabria_2019.pdf
Tamaño:
1.04 MB
Formato:
Adobe Portable Document Format
Descripción:
Trabajo de grado
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.5 KB
Formato:
Item-specific license agreed upon to submission
Descripción: