Standard Error Correction in Two-Stage Optimization Models: A Quasi-Maximum Likelihood Estimation Approach

dc.contributor.authorRios-Avila, Fernando
dc.contributor.authorCanavire-Bacarreza, Gustavo
dc.contributor.eafitauthorgcanavir@eafit.edu.co
dc.coverage.spatialMedellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degreeseng
dc.date.accessioned2017-05-23T20:11:03Z
dc.date.available2017-05-23T20:11:03Z
dc.date.issued2017-05-01
dc.description.abstractFollowing Wooldridge (2014), we discuss and implement in Stata an efficient maximum likelihood approach to the estimation of corrected standard errors of two-stage optimization models. Specifically, we compare the robustness and efficiency of this estimate using different non-linear routines already implemented in Stata such as ivprobit, ivtobit, ivpoisson, heckman, and ivregress.eng
dc.identifier.urihttp://hdl.handle.net/10784/11432
dc.language.isoengeng
dc.publisherUniversidad EAFITspa
dc.publisher.departmentEscuela de Economía y Finanzasspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesseng
dc.rights.localAcceso abiertospa
dc.subject.keywordMaximum Likelihood Estimationspa
dc.subject.keywordnon-linear modelsspa
dc.subject.keywordendogeneityspa
dc.subject.keywordtwo-step modelsspa
dc.subject.keywordstandard errorsspa
dc.titleStandard Error Correction in Two-Stage Optimization Models: A Quasi-Maximum Likelihood Estimation Approacheng
dc.typeworkingPapereng
dc.typeinfo:eu-repo/semantics/workingPapereng
dc.type.hasVersiondrafteng
dc.type.localDocumento de trabajo de investigaciónspa

Archivos

Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
WP-2017-09 Fernando Rios-Avila.pdf
Tamaño:
593.07 KB
Formato:
Adobe Portable Document Format
Descripción:
Documento de trabajo de investigación
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.5 KB
Formato:
Item-specific license agreed upon to submission
Descripción: