Standard Error Correction in Two-Stage Optimization Models: A Quasi-Maximum Likelihood Estimation Approach
Fecha
2017-05-01
Autores
Rios-Avila, Fernando
Canavire-Bacarreza, Gustavo
Título de la revista
ISSN de la revista
Título del volumen
Editor
Universidad EAFIT
Resumen
Following Wooldridge (2014), we discuss and implement in Stata an efficient maximum likelihood approach to the estimation of corrected standard errors of two-stage optimization models. Specifically, we compare the robustness and efficiency of this estimate using different non-linear routines already implemented in Stata such as ivprobit, ivtobit, ivpoisson, heckman, and ivregress.