Standard Error Correction in Two-Stage Optimization Models: A Quasi-Maximum Likelihood Estimation Approach

Fecha

2017-05-01

Autores

Rios-Avila, Fernando
Canavire-Bacarreza, Gustavo

Título de la revista

ISSN de la revista

Título del volumen

Editor

Universidad EAFIT

Resumen

Following Wooldridge (2014), we discuss and implement in Stata an efficient maximum likelihood approach to the estimation of corrected standard errors of two-stage optimization models. Specifically, we compare the robustness and efficiency of this estimate using different non-linear routines already implemented in Stata such as ivprobit, ivtobit, ivpoisson, heckman, and ivregress.

Descripción

Palabras clave

Citación