Geometric constraint subsets and subgraphs in the analysis of assemblies and mechanisms
dc.citation.epage | 137 | spa |
dc.citation.issue | 3 | spa |
dc.citation.journalTitle | Ingeniería y Ciencia | eng |
dc.citation.journalTitle | Ingeniería y Ciencia | spa |
dc.citation.spage | 103 | spa |
dc.citation.volume | 2 | spa |
dc.contributor.author | Ruíz, Óscar E. | |
dc.contributor.author | Ferreira, Placid M. | |
dc.contributor.department | Universidad EAFIT. Departamento de Ingeniería Mecánica | spa |
dc.contributor.researchgroup | Laboratorio CAD/CAM/CAE | spa |
dc.date.accessioned | 2016-11-18T22:25:09Z | |
dc.date.available | 2016-11-18T22:25:09Z | |
dc.date.issued | 2006-03 | |
dc.description.abstract | Geometric Reasoning ability is central to many applications in CAD/CAM/CAPP environments -- An increasing demand exists for Geometric Reasoning systems which evaluate the feasibility of virtual scenes specified by geometric relations -- Thus, the Geometric Constraint Satisfaction or Scene Feasibility (GCS/SF) problem consists of a basic scenario containing geometric entities, whose context is used to propose constraining relations among still undefined entities -- If the constraint specification is consistent, the answer of the problem is one of finitely or infinitely many solution scenarios satisfying the prescribed constraints -- Otherwise, a diagnostic of inconsistency is expected -- The three main approaches used for this problem are numerical, procedural or operational and mathematical -- Numerical and procedural approaches answer only part of the problem, and are not complete in the sense that a failure to provide an answer does not preclude the existence of one -- The mathematical approach previously presented by the authors describes the problem using a set of polynomial equations -- The common roots to this set of polynomials characterizes the solution space for such a problem -- That work presents the use of Groebner basis techniques for verifying the consistency of the constraints -- It also integrates subgroups of the Special Euclidean Group of Displacements SE(3) in the problem formulation to exploit the structure implied by geometric relations -- Although theoretically sound, these techniques require large amounts of computing resources -- This work proposes Divide-and-Conquer techniques applied to local GCS/SF subproblems to identify strongly constrained clusters of geometric entities -- The identification and preprocessing of these clusters generally reduces the effort required in solving the overall problem -- Cluster identification can be related to identifying short cycles in the Spatial Con straint graph for the GCS/SF problem -- Their preprocessing uses the aforementioned Algebraic Geometry and Group theoretical techniques on the local GCS/SF problems that correspond to these cycles -- Besides improving theefficiency of the solution approach, the Divide-and-Conquer techniques capture the physical essence of the problem -- This is illustrated by applying the discussed techniques to the analysis of the degrees of freedom of mechanisms | eng |
dc.format | application/pdf | eng |
dc.identifier.issn | 1794-9165 | |
dc.identifier.uri | http://hdl.handle.net/10784/9691 | |
dc.language.iso | eng | eng |
dc.publisher | Universidad EAFIT | spa |
dc.relation.ispartof | Ingeniería y Ciencia, Volume 2, Issue 3, pp. 103-137 | spa |
dc.relation.uri | http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/489 | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights.local | Acceso abierto | spa |
dc.subject.keyword | Geometry, algebraic | spa |
dc.subject.keyword | Polynomials | spa |
dc.subject.keyword | Computer algorithms | spa |
dc.subject.keyword | Commutative algebra | spa |
dc.subject.keyword | Geometry | eng |
dc.subject.keyword | algebraic | eng |
dc.subject.keyword | Polynomials | eng |
dc.subject.keyword | Computer algorithms | eng |
dc.subject.keyword | Commutative algebra | eng |
dc.subject.keyword | Restricciones geométricas | .keywor |
dc.subject.keyword | Sistemas CAD/CAM | .keywor |
dc.subject.keyword | Bases de Gröbner | .keywor |
dc.subject.lemb | POLINOMIOS | spa |
dc.subject.lemb | GEOMETRÍA ALGEBRÁICA | spa |
dc.subject.lemb | ALGORITMOS (COMPUTADORES) | spa |
dc.subject.lemb | ÁLGEBRA CONMUTATIVA | spa |
dc.title | Geometric constraint subsets and subgraphs in the analysis of assemblies and mechanisms | eng |
dc.type | info:eu-repo/semantics/article | eng |
dc.type | article | eng |
dc.type | info:eu-repo/semantics/publishedVersion | eng |
dc.type | publishedVersion | eng |
dc.type.local | Artículo | spa |
Archivos
Bloque original
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- geometricConstraintSubsetsandSubgraphsintheAnalisys.pdf
- Tamaño:
- 314.02 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 2.5 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: