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Resumen

La habilidad del Razonamiento Geométrico es central a muchas aplicaciones de
CAD/CAM/CAPP (Computer Aided Design, Manufacturing and
Process Planning). Existe una demanda creciente de sistemas de Razonamien-
to Geométrico que evalien la factibilidad de escenas virtuales, especificados
por relaciones geométricas. Por lo tanto, el problema de Satisfaccién de Res-
tricciones Geométricas o de Factibilidad de Escena (GCS/SF) consta de un
escenario basico conteniendo entidades geométricas, cuyo contexto es usado
para proponer relaciones de restricciéon entre entidades ain indefinidas. Si la
especificacién de las restricciones es consistente, la respuesta al problema es
uno del finito o infinito nimero de escenarios solucién que satisfacen las restric-
ciones propuestas. De otra forma, un diagndstico de inconsistencia es esperado.
Las tres principales estrategias usadas para este problema son: numérica, pro-
cedimental y matemaética. Las soluciones numérica y procedimental resuelven
sélo parte del problema, y no son completas en el sentido de que una ausen-
cia de respuesta no significa la ausencia de ella. La aproximaciéon matematica
previamente presentada por los autores describe el problema usando una serie
de ecuaciones polinémicas. Las raices comunes a este conjunto de polinomios
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Geometric constraint subsets and subgraphs in the analysis of assemblies and mechanisms

caracteriza el espacio solucién para el problema. Ese trabajo presenta el uso
de técnicas con Bases de Groebner para verificar la consistencia de las res-
tricciones. Ella también integra los subgrupos del grupo especial Euclideo de
desplazamientos SE(3) en la formulacién del problema para explotar la estruc-
tura implicada por las relaciones geométricas. Aunque tedricamente sélidas,
estas técnicas requieren grandes cantidades de recursos computacionales. Este
trabajo propone técnicas de Dividir y Conquistar aplicadas a sub-problemas
GCS/SF locales para identificar conjuntos de entidades geométricas fuerte-
mente restringidas entre si. La identificacién y pre-procesamiento de dichos
conjuntos locales, generalmente reduce el esfuerzo requerido para resolver el
problema completo. La identificacién de dichos sub-problemas locales esta re-
lacionada con la identificacién de ciclos cortos en el grafo de Restricciones
Geométricas del problema GCS/SF. Su pre-procesamiento usa las ya mencio-
nadas técnicas de Geometria Algebraica y Grupos en los problemas locales que
corresponden a dichos ciclos. Ademéas de mejorar la eficiencia de la solucién,
las técnicas de Dividir y Conquistar capturan la esencia fisica del problema.
Esto es ilustrado por medio de su aplicacién al andlisis de grados de libertad
de mecanismos.

Palabras claves: graph cycle, Groebner basis, constraint graph,mechanisms,
assemblies.

Abstract

Geometric Reasoning ability is central to many applications in CAD/CAM/
CAPP environments. An increasing demand exists for Geometric Reasoning
systems which evaluate the feasibility of virtual scenes specified by geometric
relations. Thus, the Geometric Constraint Satisfaction or Scene Feasibility
(GCS/SF) problem consists of a basic scenario containing geometric entities,
whose context is used to propose constraining relations among still undefined
entities. If the constraint specification is consistent, the answer of the problem
is one of finitely or infinitely many solution scenarios satisfying the prescribed
constraints. Otherwise, a diagnostic of inconsistency is expected. The three
main approaches used for this problem are numerical, procedural or opera-
tional and mathematical. Numerical and procedural approaches answer only
part of the problem, and are not complete in the sense that a failure to provide
an answer does not preclude the existence of one. The mathematical approach
previously presented by the authors describes the problem using a set of poly-
nomial equations. The common roots to this set of polynomials characterizes
the solution space for such a problem. That work presents the use of Groeb-
ner basis techniques for verifying the consistency of the constraints. It also
integrates subgroups of the Special Euclidean Group of Displacements SE(3)
in the problem formulation to exploit the structure implied by geometric rela-
tions. Although theoretically sound, these techniques require large amounts of
computing resources. This work proposes Divide-and-Conquer techniques ap-
plied to local GCS/SF subproblems to identify strongly constrained clusters
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of geometric entities. The identification and preprocessing of these clusters
generally reduces the effort required in solving the overall problem. Cluster
identification can be related to identifying short cycles in the Spatial Con-
straint graph for the GCS/SF problem. Their preprocessing uses the afore-
mentioned Algebraic Geometry and Group theoretical techniques on the local
GCS/SF problems that correspond to these cycles. Besides improving the
efficiency of the solution approach, the Divide-and-Conquer techniques cap-
ture the physical essence of the problem. This is illustrated by applying the
discussed techniques to the analysis of the degrees of freedom of mechanisms.

Key words: graph cycle, Groebner basis, constraint graph,mechanisms, as-

semblies.

1 Introduction

In diverse problems in CAD/CAM/CAPP a set of geometric objects is pre-
sented, and a set of geometric relations between them is proposed. The goal
is to obtain instances or positions of the objects which respect the proposed
relations. In a more formal way, the Geometric Constraint Satisfaction or
Scene Feasibility (GCS/SF) problem can be stated as follows: Let a World
W be, a closed, homogeneous subset of E3, with a set of partially or totally
defined geometric entities S = {e1, ..., e, } which are closed, connected subsets
of W. A set of spatial relations, R = {R; ;1 } is defined /specified over pairs of
entities, where R; ;. is the kt" relation between entities i and j. The goal is
to obtain either instances of every entity e; in S, consistent with all specified
relations in R, or a diagnostic of inconsistency in the set of specified relations.

The fact that GCS/SF underlies a number of problems in CAD/CAM/
CAPP areas motivates this work. In fixturing, the holding of a workpiece
during a manufacturing process is basically an assessment of the feasibil-
ity /consistency of a number of contact relationships between two bodies. The
verification of deterministic positioning [fI] of workpiece in the fixture is an
analysis of the degrees of freedom of the set of contact constraints. In assem-
bly planning the problem of feasibility of an assembly implies a study of the
possible relative positions and motion between its components. In constraint-
based design geometrical relations specified between entities can be viewed as
one subset of the constraint set. Verification of the geometrical feasibility of
the design is a GCS/SF problem. Modifications to dimensions or positions
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of components in the design must be compatible with the relations specified
between them. Conversely, modification of these relations must be accompa-
nied by a verification of their consistency, given the dimensions and positions
of the existing objects. In tolerancing and dimensioning, tolerance relations
are essentially geometric constraints. Their satisfaction implies issues such as
inconsistent and redundant dimensioning, which are intrinsically scene feasi-
bility problems. From these examples, it is evident that a strong theoretical
and practical background in satisfaction of geometric constraints is crucial in
CAD/CAM/CAPP applications.

Topology and Geometry are two interdependent aspects of the GCS/SF
problem, though they have often been treated independently. Topology deals
exclusively with the connectivity and nature of the spatial relations between
entities. Geometry refers to the distances and directions that parameterize
these relationships. Topologically, this work will address contact constraints.
As is demonstrated in [J] contact constraints can be expressed as algebraic
equalities. In contrast, other types of constraints, for example the non-
invasiveness between solids, require the use of inequalities. Geometrically,
this work is restricted to zero curvature (points, straight lines and planes)
proper subsets of E3.

1.1 Literature survey

Solving the GCS/SF problem implies the ability to:

1. Instance entities (or produce configurations) which satisfy the given
constraints.

2. Identify a redundant constraint.
3. Determine an inconsistent set of constraints.

4. Determine the degrees of freedom between two entities.
In addition to the above capabilities, it is necessary to have reduced com-

putational effort and a clear relation between variables used in the mathe-
matical formulation of the GCS/SF problem and physical degrees of freedom
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of the entities involved. The GCS/SF problem has been be addressed in var-
ious forms, often indirectly, using: (i) numerical methods, (ii) procedural or
operational approaches, and (iii) mathematical formalization.

Numerical techniques ([B], H], [[]) essentially sample points in the solu-
tion space of the GCS/SF problem. They produce a particular answer (a set
of fully instanced entities) representing a single configuration of the scene,
irrespective of the multiplicity or dimension of the solution space. They only
provide an incomplete answer to question []. We emphasize the incomplete
nature of such an approach because failure of the numerical method to pro-
duce an answer does not imply an empty solution space (inconsistent set of
relations in the problem) as it could result from a failure of convergence of
the numerical procedure. Numerical techniques, although required for deter-

mining particular configurations, do not address the questions [, f and .

Procedural or operational techniques ([f], [i], [H]) apply intuitive algo-
rithms to keep an account of the degrees of freedom present in the scene in
the face of added constraints. Kramer, in [, attacks the problem of Geo-
metric Constraint Satisfaction using an algorithmic approach called degree of
freedom analysis. This work concentrates on the area of kinematic analysis of
mechanisms. This procedural technique sequentially satisfies the imposed con-
straints, placing the emphasis on the degrees of freedom of the entities. They
are classified into rotational and translational, and an inventory of degrees of
freedom is kept for each entity in the scene. This inventory is updated when-
ever a new constraint is added to the system. Although this work partially
answers questions [[H]; its limitations are: (i) in many situations the separa-
tion between rotational and translational degrees of freedom is not possible;
(ii) the approach encounters a large number of exceptions and attempts to
deal with them on a case-by-case basis; and (iii) template solutions obtained
on the basis of the topology of the constraint network cannot be re-applied
to identical constraint networks under different geometrical conditions. This
fact, extensively documented in [B], [H], [B], [Id], LT, is due to the fact that
the existence of solution spaces for the constraint equations depends upon
the value of the parameters of the problem, even under identical constraint
structures.

Although numerical and procedural techniques have the advantages of
simplicity and computing efficiency, their lack of completeness is a serious ob-
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stacle in their applicability (especially in automated analysis environments).
It is opinion of the authors that more work is needed on the mathematical
formalization and solution of the GCS/SF problem before numerical or pro-
cedural techniques can be effectively used. The following paragraphs address
a review of research efforts in this direction.

Questions PHl have not been satisfactorily answered in a systematic man-
ner to the present because the dimension of the solution space for the GCS/SF
problem is a function of both topological and geometrical conditions. In other
words, manipulation of the topological part of the GCS/SF problem is not
sufficient for determining the topology (degrees of freedom) of the solution.

In current literature, the GCS/SF problem has been approached from the
areas of group theory [[[(] and kinematics and mechanisms ([g], [[J]). A joint
in a rigid bar mechanism is, by definition, a constraint. Therefore, historically,
the study of mechanism analysis precedes constraint satisfaction problems.
This multiplicity of disciplines studying the same area is manifested in the fact
that the terms (trivial) constraint, joint and group are used interchangeably
in the discussion.

Investigators ([f], [[J]) introduced the necessary formalization for the
GCS/SF problem in the form of equations of unknown positioning matri-
ces. They proposed re-writing rules as a solution approach to the resulting
system of equations. Since it is often the case that there is no closed form
solution for the GCS/SF problem, re-writing rules have limited success. They
guarantee a complete solution only for trivial constraint chains, discussed be-
low. Popplestone ([[L4], [LH]) has explored the mathematical formalization
of situations involving symmetries such as arrays, hexagonal pieces, mirror
arrangements, etc. Finite groups are particularly appealing in the statement
of these problems.

In the context of kinematic analysis, Angeles ([B], [1J]) expanded on
Herve’s formalization of kinematic joints in terms of the subgroups of the
SE(3) Group. Angeles proposed an algorithm for mobility analysis of kine-
matic chains whose degrees of freedom can be solely determined by the topol-
ogy of the participant joints. These chains are classified into trivial and
exceptional ([{], [I2]). The trivial chain is constituted by sequences of joints
(subgroups of SE(3)) whose composition is another subgroup of SE(3). The
exceptional chains are not, but can be reduced to, trivial ones. The method
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is based on application of re-writing rules from Herve’s look-up tables [[L0].
They predict the topological structure of the composition and intersection of
subgroups. The method is limited in the following aspects: (i) re-writing rules
are based only on the type of joints (topology) of the chain. Therefore they
ignore a variety of chains (called paradoxical), in which the topology aspect is
insufficient to predict their behavior; and (ii) they do not allow the so called
complex constraint networks, in which an entity may have more than two
constraining relations. In addressing paradoxical chains, Angeles proposes
the Jacobian method, which has the advantage of including topological and
geometrical information. With this integration paradoxical and complex con-
straint systems can be analyzed. Based on Herve’s formalization, the case of
trivial constraints has been studied (], [L6], [[7], [1§]) in the context of topo-
logical reduction of constraint networks. This reduction may be achieved by
the application of re-write rules also used by Ambler [{] or the reduction ta-
bles by Herve [[[(]. Limitations of this work are the topology-only treatment,
and the type of constraints (trivial) that it considers. Its contributions are
(i) the methodology proposed to state the GCS/SF problem in terms of the
SE(3) group in the applications of assembly planning; and (ii) the separation
of geometry and topology in the formulation of the problem.

Ruiz & Ferreira ([@], [19]) formulated the GCS/SF problem as one of de-
termining the solution space of a set of polynomials. Beyond the elementary
goal of solving a set of polynomials for common roots, Groebner Bases were
used to characterize the algebraic set of a polynomial ideal and the properties
of Groebner Bases 0] were used as a theoretical framework to respond to
questions about consistency, ambiguity and dimension of the solution space.
The method allowed the integration of geometric and topological reasoning.
The high computational cost of Buchberger’s algorithm ([L1], [R1]) for the
Groebner Basis forced the use of a more efficient set of variables, able to ex-
press the prescribed constraints with a minimum amount of redundancy, and
with a strong physical meaning. Using the group theoretic formulation of
Herve for the formulation of the problem and Groebner Basis techniques for
its solution, Ruiz & Ferreira were able to integrate individual advantages of
Algebraic Geometry and Group Theory, therefore reducing the computational
effort ([Q], [[9]). However, to solve larger problems, increased computational
efficiency is required to make the theoretical completeness of the methods
useful from the practical point of view. Therefore, the issue of lowering com-
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putational expenses is addressed in this investigation. As one moves to more
complex scenarios, the structure of the problem plays a larger role in the
computational costs of the solution. To exploit the problem structure this
investigation uses a Divide-and-Conquer paradigm for solving complex prob-
lems. First, the problem of identifying well-constrained sets of ”clusters” of
entities as subproblems is addressed. Then, the aggregation of the solutions to
these subproblems into the overall solution is attempted. This paper therefore
represents an extension of the work in [, [[9].

This paper is organized as follows: section (B) explores previous work
in which Algebraic Geometry and Group Theory complement each other to
make the solution to GCS/SF a theoretically sound and physically meaning-
ful procedure. Section (B]) discusses the Spatial Constraint (SC) graph as a
means of expressing the GCS/SF problem. It also explains how the partition-
ing of the SC graph relates to physical situations. Section (H)) establishes the
applicability of graph theory to the solution of the GCS/SF problem. Section
(B) presents a case study in Design of Mechanisms as a GCS/SF problem. It
applies the different techniques proposed and compares their performances.
Section () offers conclusions about this work and draws lines for future re-
search. Appendix [A] presents the detailed Groebner Basis results obtained in
the examples.

2 Background

This section briefly reviews material on Algebraic Geometry (Groebner Basis)
and Group Theory which have important consequences on the statement and
solution of the GCS/SF problem. For standard properties or notation see [,

L), (3], [, [L9) and [R).

2.1 Algebraic Geometry and the GCS/SF problem

The GCS/SF problem takes place in a world W, with a set of relations R.
If a set of entities S = {ey, ..., e, } satisfies the constraints, it is said that S
is feasible for W and R, and this fact is written as S = feasible(W, R). If
the polynomial form of the problem is F' = f1, fo, ..., fn with f; polynomials
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in variables x1,xa, ..., T, it is said that F' = poly_form(W, R). Since S is a
solution for F, it is denoted as S = solution(F).

Given that F' = poly_form(W, R) and S = feasible(W, R), F has an as-
sociated ideal I (F'). For any polynomial set F', the Groebner Basis GB(F) is
an alternative set, which generates the same ideal I (F'), but presents advan-
tages in characterizing its solution space. For the purposes of this paper, the
calculation of the Groebner Basis of a set of polynomials F' can be regarded as
a black box procedure whose result, GB(F), has several important properties.
The properties allow to draw the following propositions:

1. S = solution(F) iff S = solution(GB(F')). This is a consequence of the
fact that F' and GB(F') span the same polynomial ideal. In the context
of the GCS/SF problem, this implies that GB(F) and F describe the
same scene, although GB(F) presents properties useful in the solution
process.

2. 1€ GB(F) — S = solution(F) = ¢. If the field is algebraically closed,
finding ”1” or a constant polynomial in GB(F') implies the equation
”?0=1" leading to the fact that F' has no solution in that field. However,
the converse proposition has to be carefully used: If 1 € GB(F), a
solution exists, although it might be complex. Therefore, an additional
check to ensure a real solution is needed.

3. If I (F) is a Zero-dimensional ideal, then the set ' (and GB(F)) has a
finite number of solutions. Therefore S = feasible(W, R) has a finite
number of configurations. The zero-dimensionality of I can be assessed:
A variable x is free if it does not appear as head(p) for any polynomial
p € GB(F)(p = 2% + tail(p),d € N). A zero-dimensional ideal I (F)
has no free variables in its polynomial basis, GB(F").

4. Let a new constraint be represented by polynomial f. f is redundant to
F < (1€ GB(FU{y- f—1})) for a new variable y. This proposition
determines whether an additional constraint is redundant by examining
if the satisfaction of the new constraint f is unavoidable when the initial
set of constraints is satisfied.

5. GB(F) (based on a lexicographic order) is a triangular set in the sense
that GB(F) contains polynomials only in x1, some others only in x1, 22,
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and so on, making the numerical solution a process similar to triangular
elimination.

These properties and propositions provide a theoretical framework for the
solution of the GCS/SF problem. It can be summarized in the following
macro-algorithm [B], in which the invariant clause for the loop is the ex-
istence of a set of non-redundant, consistent and multi-dimensional set of
(constraint-generated) polynomials.In the event of the addition of new con-
straints to the scene (line f]), the algorithm converts them into polynomial(s)
(line [d), and tests their redundancy by using property 4 (line []), consistency
by using property 2 (line []) and zero-dimensionality of the accumulated set
of constraint-based polynomials by property 3 (line [[j). If the new constraint
is redundant, it is ignored (line [L1]). In the other two cases the invariant be-
comes false and the loop breaks. If the ideal has become zero-dimensional a
triangular Groebner Basis under some stated lexicographic order is extracted
and solved by using property 5 (line P4). Property 1 is the underlying basis
of the algorithm, since it establishes that the GB(F') faithfully represents F,
with the same roots and ideal set.

0 {Pre: W a fixed scenario}
L F={}

2 GB ={}

3  do new relation R;

4 {Inv: F is consistent, non-redundant, non-zero—dimensional }

5 R=RU{R;}

6 f = poly_form(W, R;)

7 if (1eGB,(FU{f})) then

8 stop (system is inconsistent)

9 else

10 if (f € Radical(F)) then

11 skip(f is redundant)

12 else

13 F=FU{f}

14 GB; = GroebnerBasis(F, <)
15 if (ZeroDimension(GBy)) then
16 break loop

17 else
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18 skip (next relation—constraint)

19 fi

20 fi

21 fi

22 od

23 GB; = GroebnerBasis(F, <;)

24 S = triangular_solution(GBy)

25 {Post: R ={R;} a set of relations; S = feasible(W, R)}

In [f] the theoretical completeness of this formulation was demonstrated.
However, two problems were detected in the initial approaches to the prob-
lem: (i) the set of variables used did not have a direct relation with the
degrees of freedom of the entities, therefore impeding the interpretation of
the resulting Groebner Bases in terms of scene configuration; and (ii) the
large computational complexity [[[1]] of Groebner Basis was compounded by
the large number of variables used in the formulations. In order to address the
issue of computational expenses and the need for a geometrically meaning-
ful statement for GCS/SF, a Group-theoretical approach was adapted from
previous investigations. Next section addresses the results of such efforts.

2.2 Group-theoretic formulation for the GCS/SF problem

This section examines the modeling of the GCS/SF problem by using the
canonical form of conjugation classes developed by Herve [I(] and the ap-
plication of his work by several authors ([J]], [f], [[(4]). The set of Euclidean
displacements in 3D, SE(3), is a (non commutative) group ([22], [RJ]) with the
composition operation (o). SE(3) presents subsets which are groups them-
selves, and which express certain common classes of displacements. They are
called subgroups. For example, the subgroup of the rotations about a given
axis u in the space, R,, is a subset of SE(3), and a group itself. Given A, B,
subgroups of the Euclidean group SE(3), A is a conjugate of B (A ~ B)
iff 37 € SE(3) such that A = T~1BT. The relation A ~ B is an equiva-
lence relation. It is symmetric, reflexive and transitive. It defines equivalence
classes called conjugation classes. Conjugation classes have a canonical sub-
group which represents any other subgroup in the class by applying a trans-
formation T for a change of basis. A list of the conjugation classes for the
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subgroups of SE(3) and their canonical representation [[LJ], as well as their
degrees of freedom is shown in table ([l]). In this table, twiz(f) means a ro-
tation about the X axis by 6, XT'OY means a rotation by 90° about the Z
axis, and trans(z,y, z) indicates a general spatial translation. The concept
of equivalence (conjugation) allows naming certain displacements in SFE(3)
as “linear translations”, “rotations”, “planar slidings”, etc, therefore making
the link between subgroups of SE(3) and kinematic constraints. For example,
“rotations” are all transformations of the form

R.(0) = B.R,(0).B™! = B.twiz().B™",

with B € SE(3) and R, (f) = twiz(f) being the canonical representation
of the conjugation class of rotations. The displacement B represents the
geometric part of a particular constraint, while the canonical part contains
the topological information; the number and type of degrees of freedom.

Table 1: Conjugation classes and their canonical forms

| dof | Symbol | Conjugation Class | Canonical Subgroup |

1 R, Rotations about axis u {twixz(6)}

1 T, Translations along axis u {trans(z,0,0)}
Screw movement along axis .

1 Hy,p w, with pitch p {trans(z,0,0).twiz(p.z)}

2 Cy aculﬁlrilgld;)lc(;:lu movement {trans(z,0,0).twiz(0}
Planar translation parallel

2 T, to plane P {trans(0,y,2)}

3 G, 21anar sliding along plane {trans(0, y, =) twiz(6)}

3 So Spherical rotation about {twiz (). XTOY twiz(p).
center O = (0,0,0) XTOY twiz(0)}

3 T 3D translation {trans(z,y, z)}
Translating Screw axis wv, .

3 Yip pitch p {trans(z,y, z).twiz(p.x)}
3D translation followed by .

4 X, rotation about v {trans(z,y, z).twiz(0)}

A constraint between two entities by definition maintains invariant certain
relations between the constrained entities. For example (see table [l]), a planar
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sliding, G, allows 2 translational and 1 rotational degree of freedom, while
still ensuring planar contact between the two parts. A rotational constraint,
R,, preserves axial and radial relative distances, allowing 1 angular degree of
freedom between the constrained entities.

Using this methodology, the contact constraints addressed in this investi-
gation are specified as shown in table (B)). For example, a P-ON-PLN relation
confines a point to be on a plane, therefore configuring a 5-dof constraint. It
includes 2 dof related to the position of the point on the plane (T'p), and 3
dof, corresponding to the orientation (S) of the frame attached to the point
(points are in the origin of their attached frame; lines coincide with the X
axis of their frame and planes coincide with the Y-Z plane of their attached
frame). These (matrix) equations allow for the construction of the polyno-
mial form of the GCS/SF problem. The methodology for this modeling is
discussed next.

Table 2: Entity relations in the form of kinematic joints

| Macro | Joint chain | Kinematic joints in chain | dof |
P-ON-P S spherical 3
P-ON-LN T, 08, linear translation, spherical 4
P-ON-PLN TpoS, planar translation, spherical | 5
LN-ON-LN C cylindrical 2
LN-ON-PLN | T,0 R, o R,, | planar translation, revolute 4
PLN-ON-PLN Tpo R, planar translation, revolute 3

The GCS/SF problem is stated as a series of constraints R; relating Fj;
with Fjo as shown in figure ([[]) (corresponding to a two body system), where
Fj; is the ith feature of body B;. The R;() constraints are in general com-
posed by translations T'() and rotations Rot(), as dictated by tables (fl) and
() Body Bj contains two features, whose frames are Fi; and Fb;. The cor-
responding features in body By are Fis and Fyo. The goal is to find a final
position of B (assuming By stationary), such that Fj; relates to Fia and Fy;
relates to Fho satisfying the invariance dictated by R;() and Ry() respectively.
The final position of B; must be such that feature frames Fy; and Fio differ
exactly in the orientation and position changes allowed by constraint R;().

The same should be true for Fy and Fhs with regard to Rs(). The equations
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expressing the facts above are

Bl . F11 . Rl() = BQ . F12 and Bl . F21 . RQ() = BQ . F22 . (1)

Ro=T(X2,y2,22). HOt(ez,mz,\Pz)

Initial Final

a Al Ri1()=T(x1,y1,z1).Rot(81,01 Y1)
position position

Figure 1: Two body example. Canonical variable modeling of the GCS/SF problem

The above procedure can be generalized to the case in which there are sev-
eral relations (constraints) R;() specified among bodies. Once the constraint
equations are obtained by this procedure, the construction of the Groebner
Basis and its interpretation are carried out in the manner described by the
constraint management algorithm discussed in last section. This formulation
of the problem produced significant savings in computational effort when com-
pared to a formulation obtained by trying to directly obtain a transformation
for each body in a world coordinate frame (see [fJ] for details). Further in-
formation on the group theoretic formulation of such problems appear in [,

0] and [fi6].

3 Partitioning of the GCS/SF problem

We have, thus far, outlined a problem formulation based on the underlying
group structure of displacements and a general solution procedure based on
Groebner Basis construction. In this section, we present a scheme that at-
tempts to exploit structures that might be present in particular instances of
a GCS/SF problem by a Divide-and-Conquer Technique [[7]. The discussion
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will be illustrated with an example of a mechanisms; the Cartesian, or X —Y
table. The mechanism is expressed in the form of a set of bodies with con-
straints between them. The goal of the exercise is to determine the degrees of
freedom of the design. Other examples of GCS/SF in the area of Mechanism
Design and Analysis can be found in [[[].

The Cartesian table (see figure ) is intended to produce two translational
degrees of freedom, thereby producing a planar translation between bodies
By and Bs. The constraints in the problem are shown in table (). The
features Fj; involved in each C} appear in column 3, while the sequences
of compositions of subgroups of SE(3) for each constraint Cj appear in the
column 4. Notice that this example includes non-trivial constraints such as
Cl, CQ, Cg and 04.

w T F21(N)

C84LN-LN

F23 (LN)
Co==(N-PLN F33 (LN)

~._ C4==LN-PLN

LV F22 N)

tod
i
Y\ B2
Y
N .

C3==IN-PLN /
,
,

;\_\‘\\ [;ﬁ (tN/)‘ 777777777 j

C7==PLN-PLN 7

Figure 2: Piece disassembly of cartesian table

With the specified constraints, the bodies By, Bs and Bs have zero degrees
of freedom relative to each other. This fact, together with constraints C4, Co,
C3 and C4, forces the planes Fi5 and Fi4 to remain perpendicular to each
other. An additional G, (planar sliding) constraint forces planes Fys and Foy
to remain in contact, therefore producing the desired X — Y movement.
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Table 3: Joint list of the cartesian table

| Constraint | Constraint Type | Elements | Canonical Representation |

Cl LN-PLN FH, F14 Ru(91) OTp(yl,Zl) ORu((bl)
CQ LN-PLN Fgl, F24 Ru (92) o Tp(yg, 22) o Ru ((bg)
Cs LN-PLN Fia, Fi5 | Ru(03) 0o Tp(ys, 23) o Ru(¢3)
04 LN-PLN FQQ, F25 Ru (94) o Tp(y4, 24) o Ru (¢4)
C5 LN—LN F13, F11 Cu(95, 255)

Cﬁ LN—LN F13, F12 C'u((%, J)ﬁ)

C7 PLN—PLN F14, F25 Gp (97, Y7, 27)

Cg LN—LN F‘237 F21 Cu(eg, J)g)

Cg LN—LN F33, FQQ Cu(99, {EQ)

The SC graph, presented in figure (f]), conveys the topological and geo-
metrical information of the GCS/SF problem. This representation allows:
(i) a very clear formulation of the problem; (ii) a systematic way, suitable
for computer generation of the equations governing the degrees of freedom
of the entities involved and; most importantly (iii) the identification of sub-
problems which help in the solution of the GCS/SF problem, by allowing the
application of preprocessing techniques.

= feature position arc body origin frame
constraint arc @ frame of feature i in body j

Figure 3: Graph of spatial constraints for cartesian table

Conventions: Since entities are represented by frames, the terms entity
and frame are equivalent. In the SC graph the nodes are entity frames (B;
and Fjj). The arc between two nodes represents the displacement that relate
the corresponding entity frames. There are three types of nodes; nodes Bj,
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which represent the origin frame of a body in the World Coordinate System,
feature nodes Fj;, which represent the feature 7 in body Bj; and body nodes
that include the origin frame of the body and its features. Conceptually,
there are two types of arcs: positioning and constraint arcs. Positioning arcs
represent known relative positions of features within bodies. They always
join an entity B; and one of its features Fj;. Constraint arcs always connects
two feature nodes, which may be joined by more than one arc to admit more
than one constraint between them. The constraint arcs are represented by
Ci(xj,0m, ...), with the degrees of freedom x, 6,,... sometimes being omitted.
To simplify the notation, positioning arcs are named F};, as the features
themselves, and the body nodes are named as their origin frame, B;.

3.1 Partitioning of the Spatial Constraint Graph

Regardless of the methodology used for solving the polynomial form of the
GCS/SF problem, the complete set of constraints has to be considered in
the solution process. At the same time, given the costly symbolic processing
required in the production of a Groebner Basis, redundancy in the constraint-
based polynomial set must be avoided. Observing the SC graph of figure (f),
it is clear that each cycle in the graph produces a constraint equation for the
GCS/SF problem. For example, the cycle involving constraints Cs and Cg
leads to the following equation

Fy3.Cs.Fy' = Fi3.05.F" . (2)

The cycle-based equation () represents the connectivity of a subgraph of the
SC' graph. Therefore, it is relevant to determine a set of small cycles while
still capturing the complete connectivity of the SC' graph. A basic set (also
called fundamental) of cycles in a graph presents such properties; every other
cycle in the graph can be expressed as the ring sum ([24], 5], [B6]) of cycles of
this set. At the same time, no cycle of the basic set can be expressed in terms
of the other cycles of such a set. These two conditions render a complete and
non-redundant coverage of the SC' graph. Hence, the equations generated by
a basic set of cycles of the SC graph are a set of equations that completely
and non-redundantly express the topology of the GCS/SF problem.
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Well known results ([R4], [B3], [B6]) in graph theory indicate that (i) the
set of basic cycles is not unique, and (ii) any such a set contains exactly
|E|—|V|+1 cycles. Since the set is not unique, it is possible to generate several
alternative sets of equations or formulations for the GCS/SF problem. This
investigation proposes a partition of the SC graph into cycles that represent
easily solvable GCS/SF subproblems. This partition represents the Divide
stage of the Divide-and-Conquer strategy presented. The GCS/SF problem
decomposition requires the generation of subproblems which are highly con-
strained since they are associated with ideals of low dimensionality ([P], 0]).
Two remarks are relevant at this point: (i) low dimensional ideals are less
expensive to calculate since the time complexity of Buchberger’s algorithm is
doubly exponential in the dimension of the ideal represented by the polynomi-
als in the base [R7); and (ii) in some domains of application, such as assembly
planning, low dimensional ideals are associated to self contained subassem-
blies. Therefore such a partitioning of the GCS/SF problem presents direct
applications in CAD/CAM environments. Since high dimensional ideals are
usually related to long compositions of constraints, and to expensive compu-
tations, a desirable goal is to identify small cycles in the SC graph, with short
chains of constraints, which lead to low dimensional ideals and less expensive
computations.

Figure () illustrates several elementary graph theoretic concepts ([4],
B, [BE]) related to the SC graph of figure (J). Figure (fld) presents a simpli-
fied version of the graph, in which each node represents the basic body frame
and its feature frames. The graph SC = (V, E) therefore presents |V'| nodes
and |E| arcs. Figure (fH) shows a spanning tree for the graph. Figure ()
relates the cords (edges not in the spanning tree in i) with the cycles shown
in figure (fid), which presents a fundamental (or basic) set of cycles for the
SC' graph. Each cord produces exactly one of such cycles when added to the
spanning tree.

The construction of a basic set of cycles for a graph can be achieved by
obtaining a spanning tree 7" and the set of corresponding cords (sometimes
called cotree T"). Each cord ¢; when added to T', produces one and only one
cycle. Since exactly |E|—|V|+1 cycles are needed and there exist |E|—|V|+1
cords, it follows that the set of cycles obtained in this way serves as a basis for
the set of circs (and therefore cycles) of the graph. Obviously, the equations
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b) a spanning tree for G

Cz
Cs ! Cr7
SB=
¢) cords, cycles and spanning tree for G d) original grsaph G

Figure 4: Spanning tree and basic cycles for the constraint graph of the cartesian
table

for the GCS/SF problem only need to be written for the cycles which form
the basis for the SC graph; any other set of equations can be written as a
linear combination of the equations for the set of basic cycles.

The algorithms used for the decomposition of the SC' graph are well known
in graph theory, and therefore not explicitely included here. The first algo-
rithm determines a spanning tree 7' from a graph G. In a spanning tree T'
every cord completes a cycle that, in the worst case, has length 2H + 1, where
H is the depth of the tree. Therefore, by using a low-depth spanning tree,
the largest cycle length is limited. A heuristic strategy is used to obtain a
low-depth tree [I7]. The second algorithm uses a given spanning tree 7' and
its cotree T” to obtain the corresponding set of basic cycles. For the SC graph
of the Cartesian table this set contains four cycles of length 2, and one cycle
of length 5 (see figure id). The SC graph presents |V| = 5 nodes (entities)
and |E| = 9 edges (constraints). Since the set of basic cycles must have
|E| — V|41 =5 cycles, it follows that, since the set is basic, it constitutes a
basis for the set of circs (and cycles) of the graph. For this example, the algo-
rithms [[7] partition the GCS/SF problem into subproblems that correspond
to the following set of basic cycles

SBC = {{C1—Ca},{C3—C4},{C6—Co}, {Cs—C5}, {C5—C1—C7—C3-Cs}} . (3)

The matrix equations describing the constraint chains for each cycle ap-
pear in table (ff).
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Table 4: Constraint graph basic cycles

| Cycle name | Cycle equations |
C1—Cy F11.C1.F) = Fyy.Co Fy)
C3—C,y F12.C5.Fg' = Fyy.Cy.Fyp
Cs—Cy F13.C6.Fly' = F33.C.Fyy'
Cs—Cs Fy3.Cs.Fy' = F13.C5.F )
C5—C1—Cr7—C3—Cs | C5.01.C7 = C.C3.F}5" . Fos

At this point, in the context of the Cartesian table example, a partition of
the original GCS/SF problem —using a basic set of cycles for the SC graph—
has been determined. The next section will use such a partition in alternative
solution procedures for the problem.

4 Problem modeling and solution techniques

This section discusses the method of solution proposed for the GCS/SF prob-
lem. Next section applies them to the Cartesian table example.

4.1 Brute force approach

The initial strategy for dealing with the GCS/SF problem, called brute-force
here, implies the determination of the set of equations which convey all the
connectivity information of the corresponding SC graph. This approach uses
the set of basic cycles of the SC' graph to merely state a complete and non
redundant set of simultaneous equations. The polynomials contributed by
all the cycles in the basic set are put together in a set input to a Groebner
Basis algorithm (Maple and /or Mathematica were used for this purpose) along
with constraints that specify relationships between the parameters used in the
canonical representations of the contact constraints (for example, a rotational
constraint might produce a sin and cosine of an angle). Although the partition
of the SC' graph plays a role in the divide-and-conquer techniques, discussed
later, it is also a requisite for the statement of the polynomial form of the
GCS/SF problem.
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4.2 Divide-and-Conquer algorithm

The Divide-and-Conquer algorithms introduced in this investigation assume
the existence of a fundamental set of basic cycles for the SC graph. For
each cycle (or loop) L; (lines fl, f]) the algorithm extracts the polynomial
equations and calculates its Groebner Basis gb; (line ). The equations for
each cycle have the form of equation (). In the algorithm they are denoted
as equations(L;). The equations obtained in this way are put together into
the set full_equations (line [), whose Groebner Basis is finally calculated.
Obviously, if any one of the g; sets shows any inconsistency (gb; = {1}), the
process should stop (line ).

procedure_Divide_and_Conquer(G set of graph)

0 {Pre: G = {L1, La,..Li} basic cycles in Spatial Constraint graph}
1 full_equations = {};

2 do not_empty(G)

3 {Inv:full_equations has same roots as {L1, Lo, ..., L; } }
4 Li = next_cycle(G);

5 gb; = GB(equations(L;), <;);

6 if (ghi £ (1)) —

7 full_equations = full_equations U gb;;

8

9

else —
exit;
10 fi
11 G=G-{L;};
12 od

13 full.GB = GB(full_equations, <;);
14 {Post: full_.GB is the Groebner Basis for equations(G)}

The rational behind the partition technique just discussed lies in several
facts; (i) the individual gb; are (reduced) Groebner Bases for the polynomials
representing each basic cycle; therefore they have no internal redundancy;
(ii) local inconsistencies are filtered before the full GCS/SF problem is ad-
dressed; (iii) local solutions to subproblems can be found and used towards
the solution of the full problem, and (iv) the gb; sets represent an already
(triangularly) ordered set of polynomials. Although it is not within the scope
of this investigation to examine the details of Groebner Basis calculation, it is
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possible that in later work the pre-ordering in the individual Groebner Bases
could be exploited to speed up the processing of the full set.

4.3 Incremental-instancing algorithm

The Incremental-Instancing (II) method is a variant of the Divide-and-Conquer
technique, in which variables that can be given a value by the characteristics
of the local constraint scenario are instanced immediately, therefore progres-
sively reducing the size of the variable and polynomial sets.

This algorithm maintains a set named instanced_variables which contains
the variables that have taken a value at any point in the execution. Subse-
quently, only variables not contained in this set can be considered for Groebner
Basis calculation (lines [, []). If a Groebner Basis is successfully calculated for
a cycle (line f), the set of instanced variables is augmented by its contribution
(line [[(), and the general set of polynomials, full_equations is augmented by
the partially instanced version of its set of polynomials gb; (line [L1). When
the solution of the overall GCS/SF problem is finally attempted, only the free
variables and the instanced version of the individual Groebner Bases gb; are

used (lines [[F-[9).

procedure Incremental Instancing (G set of graph)
0 Pre: G = L1, Lo, ..., Lj;, basic cycles in Spatial Constraint graph
1 full_equations = {};

2 freewariables = {};

3 instancedwariables = {};

4 do not_empty(G)

5 {Inv: full_equations has same roots as {L1, Lo, ..., L; } }

6 L; = next_cycle(G);

7 Vi = variables(L;) — instanced_variables;

8 gb; = GB(equations(L;), Vi, <1);

9 if (gb; #1) —

10 instanced_variables = instanced_variables U instanced vars(V;, gb;);
11 full_equations = full_equationsUinstanced_form(gb;,instanced_variables);
12 else —

13 exit;

14 fi
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15 G=G-{L;};

16 od

17 free_variables = all_variables(G) — instanced_variables;

18  full_equations = instanced_form(full_equations,instanced_variables);
19  full.GB = GB(full_equations, free_variables, <;);

20 {Post: full_GB is the Groebner Basis for equations(G)}

5 The GCS/SF problem in design and analysis of mechanisms

5.1 Brute-force procedure

The brute-force approach consists of the construction of a polynomial set
which contains all the polynomials originating from the cycle-matrix equations
in table ({). The set is shown in appendix [d], equation ([]), together with
its lexicographical Groebner Basis, equation (). No partial or intermediate
solutions are used in this case.

By applying the methodology and algorithms developed ([H], [L7]) and
summarized in previous sections, the following conclusions can be drawn: (i)
the Ideal is not zero-dimensional (because the head terms of all the poly-
nomials are not pure powers of some variable and all the variables are not
accounted for in the head terms); (ii) the table is restricted to a planar trans-
lation, T}, with two degrees of freedom T),(y7, z7) —the two variables missing in
the head terms— and (iii) the subassembly Bj— Bs— Bj still keeps one degree
of freedom (z4) when all the other objects in the space are positioned. It
can move along the line intersecting planes Fi5 and Fi4. Although in real
machine tool design such a degree of freedom is unrealistic, in this example,
it has the capability to demonstrate that the confinement of the subassembly
B1—By— Bs onto a plane Fbs is not a necessary condition for the cartesian
movement of the table. In more general terms, this result demonstrates the
need for a formal degree of freedom analysis although the problem illustrated
may be apparently simple.
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5.2 Divide-and-Conquer procedure

This section presents the results of the preprocessing (Divide-and-Conquer)
applied to the individual cycles presented in table (). By observing the
figure (f) and considering the constraints in cycles C;—Cy, C3—Cy, C5—Cy
and Cg—Cy it is evident that the constraint intersections represented by these
cycles are indeed reducible, and the resulting constraints are as shown in table
(F), where I, is the neutral element in the group SE(3), and indicates a null
displacement. Their reduction cannot be guaranteed by techniques of group
intersection or composition because of the non-triviality of the constraints
involved. It will be shown here that the results in table () (column 4) can
be obtained in a local preprocessing of the constraints by using Groebner
Basis, and by the application of the relations, established [B], between the
properties of the Groebner Basis, and the solutions for the GCS/SF problem.
The application of the Divide-and-Conquer strategy to the Cartesian table
problem follows (The lexicographic Groebner bases for each subproblem are
given in appendix []):

Table 5: Topological basic cycle reductions

Cycle Path 1 Path 2 Reduced Defining
constraint | geometry
CI_CQ Cl :Fll_ON_F14 02 :FQI_ON_F14 Gp F14
03_04 03 = F12_ON_F15 04 = F22_ON_F15 Gp F15
05708 CS - FlB*ON*Fll Cg - FQg*ON*FQl I4 -
CG_CQ 06 :F13_ON_F12 09 :F33_ON_F22 14 -

Local preprocessing. Cycle C;— Cs. The simultaneous enforcement of
the two LN —ON — PLN constraints C and Cy should produce a (trivial)
constraint of the type G, planar sliding. This can be understood by realizing
that non-colinear lines Fi; and F5; of body B; have to simultaneously lie on
plane Fi4 of body By. It is expected that the following procedure will confirm
this intuitive conclusion.

By using the cycle equations shown in table ({) for cycle C;—C3, and a
lexicographic order, the triangular basis is calculated. It can be inferred that
ya2,22,C'¢o are free variables since they appear in no polynomial p as the head
term, i.e., head(p). Consistently, the result of this preprocessing indicates
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that angular degrees of freedom 6, and 6, are lost. The degrees of freedom
left represent the planar sliding G, (¢2, y2, 22), as predicted in table ([).

Local preprocessing. Cycle Cs— Cy. From table () and figure (| it is
apparent that the cycle C3—C}y presents a situation identical to cycle C1—Cj.
By using the cycle equations shown in table () for cycle C3—Cj, and a
lexicographic order, the corresponding Groebner Basis is calculated. The free
variables, z4, y4 and C¢4, are left in the constraint Gp(24,y4, ¢4). As in the
previous case, the cycle would not be reducible by a topology-based re-writing
strategy for trivial constraints.

Local preprocessing. Cycle Cs— Cg. The satisfaction of constraints Cj
and Cy implies that lines Fi3 and Fb3 of body Bs have to be respectively
placed on (perpendicular) lines Fj; and Fy; of body Bj. This geometric
condition (perpendicularity) suppresses all degrees of freedom of the cycle.
As before, this conclusion can be extracted from the Groebner Basis for the
polynomials corresponding to this cycle. In this case, no variables are left free;
and effectively bodies B; and Bjs have their relative movement completely
constrained.

Local preprocessing. Cycle Cg— Cy. As in the case of the cycle Cs—
Cs one expects that all movement be restricted between bodies Bs and Bs.
The (triangular) Groebner Basis shows the zero-dimensionality of this ideal;
therefore all the variables are instanced, and bodies B3 and By are rigidly
attached.

Local preprocessing. Cycle Cs— Cy— Cy— C3— Cg. Although this cycle
was determined as part of the basic set of cycles in the SC graph, the num-
ber of constraints (5) that it involves makes it unattractive for calculation
of its Groebner Basis. The reason is that its potential for high dimensional-
ity makes its preprocessing very expensive. The alternative followed was to
simply include its original cycle equations in the calculation of the full-graph
Groebner Basis, instead of their Groebner Basis. In such a case, the rest
of the constraint equations lower the dimensionality of the ideal, making its
processing feasible.

Global processing. Full Graph. The (g;) Groebner Bases already cal-
culated for the individual cycles {gb1_2, gbs—4, gbs—s, gbs—9} are used towards
the calculation of the Groebner Basis for the whole constraint graph, together
with the original cycle equations for cycle C5—C1—C7—C5—Cg. The same
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variable order was used as for the brute-force approach. As expected, the
Groebner Basis obtained is the same as in equation ([]); therefore, it is not
presented again.

Table ([]) presents the statistics for the application of the Divide-and-
Conquer and brute-force techniques. It is found that the Divide-and-Conquer
techniques are able to lower the computational expense of the problem, while
guaranteeing the correctness of the results.

Table 6: Statistics for the ct example. Divide-and-Conquer strategy

| Problem | variables | equations | GB size | time (secs) ]

Total brute force 40 73 40 107,4
Ci—C, 12 16 9 18
Cs—C, 12 16 9 2.0
C5—Cy 6 14 6 0,6
Co—Cy 6 11 6 1,0

Full graph 40 43 40 54,3
Total D & C 59,9

5.3 Incremental-instancing procedure

According to the incremental-instancing algorithm presented in previous sec-
tions, the sequence of cycles considered in the execution is presented in table
(m) Cycle C1—C5 produces an instancing of variables C6sy, S5, S61 and C0;.
This result confirms the fact that two rotational degrees of freedom are lost
in this cycle. Cycle C5—C} presents a similar situation for variables Sf3, C0s,
S0, and C#8,, and so on. Notice that, in general, the order in which the cycles
are considered is significant if they share variables (line 8 of the incremental-
instancing algorithm). In that case, a variable instanced in a processed cycle
would become a constant for the later stages of the algorithm. In this partic-
ular example the first four cycles considered do not have variables in common
among themselves. Therefore they do not influence each other. The last cy-
cle, C5—C1—C7—C3—Cg, shares variables with the ones previously considered.
The comparison between tables ([) and (f]) indicates that the advantage of
the incremental-instancing technique is present in the manipulation of the full
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set of equations. This is so because at that stage the set of variables has been
reduced by the incremental-instancing.

Table 7: Statistics for incremental-instancing algorithm

| Subgraph | Instanced values | # vars | equations | GB size | time (secs) |

01—02 092 — 1 12 16 9 1,8
S0y, — 0
591 — —1
091 — 0
03—04 593 — 0 12 16 9 2,2
Ch; — 1
594 — —1
094 — 0
Cs—Cy 5 — 1 6 14 6 0,7
xrg — 2
595 — —1
095 — 0
598 — 0
Chg — 1
Ce—Cy g — —1 6 14 6 0,7
Trg — 2
596 — ].
006 — 0
S0y — 0
Clhy — 1
Full graph Cp1 — 0 20 65 20 10,2
Sp; — 1
S¢a — 0
Cpy — 1
Sz — 1
Cp3 — 0
S¢pqs — 0
Cops—1
097 — 0
S0; — —1
Total time 15,7
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6 Conclusions

The ability to produce answers to questions about the feasibility and solution
structure of the GCS/SF problem is crucial in automated analysis and plan-
ning environments. Previous work by the authors has established an algebraic
geometry approach to the problem. As would be expected, the cost of such
determinism is the exponential computational effort required. This paper
has presented graph-theoretic approaches to formulate and solve the problem
using a Divide-and-Conquer approach in the hope of exploiting special struc-
ture that might exist in a particular problem. This method (i) identifies the
degrees of freedom lost in local subproblems; (ii) detects local geometric or
topological inconsistencies and (iii) reduces the size of the GCS/SF problem
to the degrees of freedom left by the local instancing processes. The results
in tables () and () evidence the reduced computational effort of these tech-
niques when compared to the results produced by attempting to solve the
entire problem at once.

We contemplate the use of such an approach to model and solve instances
of GCS/SF problems that present strongly (non-trivially) constrained local
sub-problems, in a multi-body multi-constraint problem. We conclude with
the following remarks

1. In general, the Groebner Basis, produced by lexicographic or total de-
gree ordering, lends itself very well to computation of the set of common
roots of a polynomial set.

2. For larger systems, the Divide-and-Conquer techniques are advisable,
since they take advantage of the existence of subsystems strongly con-
strained internally, and weakly related to the external world. These
subsystems correspond to cycles in the Spatial Constraint graph which
have instanced some of their degrees of freedom. A directly related
situation in Assembly Planning corresponds to the existence of sub-
assemblies within a large assembly. If Divide-and-Conquer techniques
are used, the local Groebner Bases are used towards the solution of the
general system. These GB; sets are already ordered (lexicographically
or by degree order) and free of redundancy and inconsistencies. There-
fore there is a amount of work contributed by these bases towards the
final solution.

‘130 Ingenieria y Ciencia, volumen 2, nimero 3



Oscar E. Ruiz and Placid M. Ferreira

3. Incremental-instancing presents the advantage of actually eliminating
degrees of freedom from the variable set, therefore contributing to lower
the computational expenses of the solution. The improvement by this
technique acts during the most expensive part of the solution process
(Full Graph processing). Therefore, it has the potential of significantly
speeding up the computation.

4. Although the pertinent examples are not discussed because limitation
in space, it has been found that preprocessing techniques speed up the
solution of large-size problems, while for small-sized ones the brute-
force approach is more advisable. This result can be attributed to the
overhead in setting up the different subproblems, which cannot justified
if the full-size problem is not large enough.

5. A partitioning of the GCS/SF problem is required to establish the com-
plete, non redundant set of equations for the problem. If this is done
with the Divide-and-Conquer technique in mind, then no additional
computation effort is expended in producing a workable set of sub-
problems. Since the cost corresponding to the partition of the GCS/SF
problem is present regardless of the utilization of Divide-and-Conquer
techniques, their application simply takes advantage of direct computa-
tional costs.

Appendix A. Groebner Bases for cartesian table example
A.1 Brute-force approach

The complete set of group-based matrix equations modeling the constraint
structure of the Cartesian table is

F11.C1(01, 91, 21, ¢1) = F21.C2(02, Y2, 22, $2)
F15.C3(03, y3, 23, ¢3) = F22.Cu(04, ya, 24, Pa)
F13.C6(06, x6). Flgl = F33.C9(09, x9). 221
F3.C5(03, w8).Foy " = F13.C5(05, x5).F,

C5(05, 25).C1(01, y1, 21, é1). 07(97,?/7,27)
Co(05, w6).C3(03, y3, 23, ¢3).F 5" Fos .
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A lexicographically ordered Groebner Basis is calculated for this model,
using the order S¢1 = Cp1 = y1 »= z1 »= S01 = CO1 = S = Cpa = ys >
ZQ>—S@2>—C@2>—S¢3>—C¢3>y3>Z3>S@3>—C§3>S¢4>—C¢4>y4>
zq4 = S04 = COy = S05 = CO5 = x5 = SO — Clg = xg = SO7 = CO7 = y7 =
z7 = Slg = Clg = xg = SOy = COy = xg .

The Groebner Basis is as follows

S+ 504,.Cpy =0 (5)
Cp1 =0

y1—S04.24—3=0

5.21 — 10.504 4+ y4.504.y7 + 5.504.y4 — 2.504.y7 — Cp4.27.504.y7—
5.C¢4.27.504, =0

5.501 — Cog.274+ys—2=0

Ct =0

Sgpo =0

Cpo — 564.50; =0

Y2 + S04.y7 +5.50, —2 =0

5.29 — 504.24.Coy.27 — 2.Cpg.27 + SO4.24.y4 + 2.y4 — 2.504.24 —4 =0
S0, =0

5.C0o 4+ Coy.z7 —ys +2=0

S+ 50,.Chgs =0

Cop3 =0

ys—1—564.24 =0

z3 —2.504 + S04.ys =0

563 =0
Ch3+ S04 =0
S¢s =0
Coi—1=0

C¢4.y4 — 2.C¢4 +5.507 — 2, =0
5.Cpy.S07+ys — Cog.27 —2=0
Cpy.22 + 2.27 — 25.Chy — 27.y4 — 5.807.y4 + 10.867 = 0
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Y3 —4ys — 21 +10.807.27 — 22 =0

S62 —1=0
Co,=0
S05+1=0
Co5;=0
x5 —1=0
S0g—1=0
Cls=0
z6+1=0
562 —1=0
Cco7T=0
Sls =0
Chs—1=0
xg—2=0
Sty =0
Chy—1=0
x9g—2=0.

Which presents y7 and z; as free variables.

A.2 Divide-and-Conquer approach

Local Preprocessing. Cycle C;— Ca. For this cycle the constraint equa-
tion is

F11.C01(01,y1, 21, 61) = F21.C2(02, y2, 22, $2) - (6)
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Given the order S¢q = Cop1 = y1 = 21 = S0y = COy = Spg = Cpo = yo »
z9 > S0y — (0, the lexicographic Groebner Basis resulted in

S — CO3.Cpa =0
Cpr+ CO3.S¢p2 =0
y1 — 14+ Cly.20 =0
21+ 2.Cly — Chs.y2 =0

56, +Chy =0 (7)
Co =0

S¢2 4+ Cg2—1=0

S0, =0

CH2—-1=0.

Which presents yo, z2, C¢o as free variables.

Local Preprocessing. Cycle C3— Cy. The constraint equation for this
cycle is

F12.C3(03,y3, 23, ¢3) = F52.C4(04, Y4, 24, P4) . (8)

For the order S¢3 = Copg = y3 = 23 = SO3 = CO3 = Spg = Cpg > ys = 24 >
S0, ~ Cly, the following lexicographic Groebner Basis is calculated

S¢s 4+ 504.Cpy =0
Cos — 5604.5¢4 =0
y3 —1—804.24 =0
23 —2.504+ 504.y4 =0

S0s =0 (9)
CO3+ 560, =0

SPp24+Co2—1=0

562 —1=0

Co,.

Which presents free variables z4, y4 and C¢y4.
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Local Preprocessing. Cycle Cs— Cg. The constraint structure of this
loop is as follows

FQg.Cg(Qg,CCg).FQ_ll = F13.C5((95,CC5).F1_11 . (10)

The ordering z5 > S05 = CO5 = xg = SO = COg leads to a (lexicographic)
Groebner Basis

5 —1=0

S05+1=0

Cl;=0

g —2=0

St =0

Clhs—1=0.

Which represents a zero-dimensional ideal.

Local Preprocessing. Cycle Cg— Cg. The constraint matrix equation for
this loop is

F13-CG(067x6)-F151 = F33.Cg(09,$9).F231 . (12)

The ordering zg = SO = Cls = x9 = SOy = Cby produces this (lexico-
graphic) Groebner Basis, which represents a zero-dimensional ideal

z6+1=0

Stg—1=0

Clg=0 (13)
T9g—2=0

S0y =0

Chy—1=0.
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