Pronóstico de la inflación colombiana : una aproximación desde los modelos machine learning
dc.contributor.advisor | Londoño Sierra, Liz Jeanneth | spa |
dc.contributor.advisor | Riascos Salas, Jaime Andrés | spa |
dc.contributor.author | Loaiza Zapata, José Fernando | |
dc.coverage.spatial | Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees | eng |
dc.creator.degree | Economista | spa |
dc.creator.email | jfloaizaz@eafit.edu.co | spa |
dc.date.accessioned | 2023-03-03T20:14:22Z | |
dc.date.available | 2023-03-03T20:14:22Z | |
dc.date.issued | 2022 | |
dc.description | El objetivo de este trabajo es pronosticar la inflación mensual de colombiana a partir de sus determinantes macroeconómicos. Se utilizan 7 modelos de machine learning: regresión lineal, SMV, Arboles de Decisión, MLP, KNN, SVR y LSTM, y 1 modelo convencional ARIMA. Los modelos de mejor pronóstico fueron los ARIMA y el LSTM. Aunque, puede mejorarse la predicción del LSTM haciendo una óptima arquitectura de los datos dado que logra capturar los cambios drásticos de las variables, incluso podría mejorar si se incluye el comportamiento de cada una de las divisiones que componen la canasta básica. | spa |
dc.description.abstract | The objective of this paper is to forecast monthly Colombian inflation based on its macroeconomic determinants. 7 machine learning models are used: linear regression, SMV, Decision Trees, MLP, KNN, SVR and LSTM, and 1 conventional ARIMA model. The models with the best prognosis were the ARIMA and the LSTM. Although, the prediction of the LSTM can be improved by making an optimal architecture of the data since it manages to capture the drastic changes of the variables, it could even be improved if the behavior of each of the divisions that make up the basic basket is included. | spa |
dc.identifier.ddc | 332.41 L795 | |
dc.identifier.uri | http://hdl.handle.net/10784/32203 | |
dc.publisher | Universidad EAFIT | spa |
dc.publisher.department | Escuela de Finanzas, Economía y Gobierno. Departamento de Economía. | spa |
dc.publisher.place | Medellín | spa |
dc.publisher.program | Economía | spa |
dc.relation.uri | https://colab.research.google.com/drive/1ljBJjqn9hwHQ8eZCbZDcT6BEOY8BXqTu | spa |
dc.relation.uri | https://colab.research.google.com/drive/1H6tEcxq_D2QI40dzIRlEihev1iIy-m56 | spa |
dc.rights | Todos los derechos reservados | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.local | Acceso abierto | spa |
dc.subject | Pronóstico | spa |
dc.subject | ARIMA | spa |
dc.subject.keyword | Inflation | spa |
dc.subject.keyword | Forecast | spa |
dc.subject.keyword | Machine learning | spa |
dc.subject.lemb | INFLACIÓN | spa |
dc.subject.lemb | INFLACIÓN - PAÍSES EN DESARROLLO | spa |
dc.subject.lemb | ECONOMETRÍA | spa |
dc.subject.lemb | APRENDIZAJE AUTOMÁTICO (INTELIGENCIA ARTIFICIAL) | spa |
dc.subject.lemb | CANASTA FAMILIAR | spa |
dc.title | Pronóstico de la inflación colombiana : una aproximación desde los modelos machine learning | spa |
dc.type | bachelorThesis | eng |
dc.type | info:eu-repo/semantics/bachelorThesis | |
dc.type.hasVersion | acceptedVersion | eng |
dc.type.local | Trabajo de grado | spa |
dc.type.spa | Monografía | spa |
Archivos
Bloque original
1 - 4 de 4
No hay miniatura disponible
- Nombre:
- EVALUACION-Loaiza_Jose[3562].pdf
- Tamaño:
- 144.7 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
No hay miniatura disponible
- Nombre:
- formulario_autorizacion_publicacion_obras_jose_loaiza.pdf
- Tamaño:
- 504.53 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Formulario de autorización de publicación de obras
No hay miniatura disponible
- Nombre:
- Tesis Jose2.1.pdf
- Tamaño:
- 585.15 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Trabajo de grado
No hay miniatura disponible
- Nombre:
- carta-aprobacion-trabajo-grado-eafit.pdf
- Tamaño:
- 118.33 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Carta de aprobación de tesis de grado
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 2.5 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: