On a minimal factorization conjecture
dc.citation.epage | 2794 | spa |
dc.citation.issue | 15 | spa |
dc.citation.journalTitle | Topology and its Applications | eng |
dc.citation.journalTitle | Topology and its Applications | spa |
dc.citation.spage | 2786 | spa |
dc.citation.volume | 154 | spa |
dc.contributor.author | Cadavid, Carlos A. | |
dc.contributor.author | Vélez, Juan D. | |
dc.contributor.department | Universidad EAFIT. Departamento de Ingeniería Mecánica | spa |
dc.contributor.researchgroup | Laboratorio CAD/CAM/CAE | spa |
dc.date.accessioned | 2016-11-30T15:19:01Z | |
dc.date.available | 2016-11-30T15:19:01Z | |
dc.date.issued | 2007-08 | |
dc.description.abstract | Let be a proper holomorphic map from a connected complex surface S onto the open unit disk D⊂C, with 0∈D as its unique singular value, and having fiber genus g>0 -- Assume that in case g⩾2, admits a deformation whose singular fibers are all of simple Lefschetz type -- It has been conjectured that the factorization of the monodromy f∈M around ϕ (0) in terms of righ-thanded Dehn twists induced by the monodromy of has the least number of factors among all possible factorizations of f as a product of righthanded Dehn twists in the mapping class group (see [M. Ishizaka, One parameter families of Riemann surfaces and presentations of elements of mapping class group by Dehn twists, J. Math. Soc. Japan 58 (2) (2006) 585–594]) -- In this article, the validity of this conjecture is established for g=1 | eng |
dc.format | application/pdf | eng |
dc.identifier.doi | 10.1016/j.topol.2007.06.003 | |
dc.identifier.issn | 0166-8641 | |
dc.identifier.uri | http://hdl.handle.net/10784/9780 | |
dc.language.iso | eng | eng |
dc.publisher | Elsevier | spa |
dc.relation.ispartof | Topology and its Applications, Volume 154, Issue 15, pp. 2786-2794 | spa |
dc.relation.uri | http://dx.doi.org/10.1016/j.topol.2007.06.003 | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights.local | Acceso abierto | spa |
dc.subject.keyword | Riemann surfaces | spa |
dc.subject.keyword | Algebraic topology | spa |
dc.subject.keyword | Geometry, differential | spa |
dc.subject.keyword | Mathematical analysis | spa |
dc.subject.keyword | Isomorphisms (Mathematics) | spa |
dc.subject.keyword | Riemann surfaces | eng |
dc.subject.keyword | Algebraic topology | eng |
dc.subject.keyword | Geometry | eng |
dc.subject.keyword | differential | eng |
dc.subject.keyword | Mathematical analysis | eng |
dc.subject.keyword | Isomorphisms (Mathematics) | eng |
dc.subject.keyword | Fibraciones elípticas | .keywor |
dc.subject.keyword | Monodromía | .keywor |
dc.subject.lemb | SUPERFICIES DE RIEMANN | spa |
dc.subject.lemb | TOPOLOGÍA ALGEBRÁICA | spa |
dc.subject.lemb | GEOMETRÍA DIFERENCIAL | spa |
dc.subject.lemb | ANÁLISIS MATEMÁTICO | spa |
dc.subject.lemb | ISOMORFISMO (MATEMÁTICAS) | spa |
dc.title | On a minimal factorization conjecture | eng |
dc.type | info:eu-repo/semantics/article | eng |
dc.type | article | eng |
dc.type | info:eu-repo/semantics/publishedVersion | eng |
dc.type | publishedVersion | eng |
dc.type.local | Artículo | spa |
Archivos
Bloque original
1 - 2 de 2
No hay miniatura disponible
- Nombre:
- on_a_minimal_factorization_conjecture.pdf
- Tamaño:
- 194.26 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Impresión de la página
No hay miniatura disponible
- Nombre:
- 1-s2.0-S0166864107002052-main.pdf
- Tamaño:
- 170.09 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 2.5 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: