Publicación:
Application of sensitivity- and uncertainty-based techniques for the assessment of epidemiological models in real-life study cases

dc.contributor.advisorVélez Sánchez, Carlos Mario
dc.contributor.advisorPuerta Yepes, María Eugenia
dc.contributor.authorRojas Díaz, Daniel
dc.coverage.spatialMedellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degreeseng
dc.creator.emaildrojasd@eafit.edu.cospa
dc.date.accessioned2020-02-25T02:46:38Z
dc.date.available2020-02-25T02:46:38Z
dc.date.issued2019
dc.description.abstractUncertainty analysis (UA) and sensitivity analysis (SA) are tools to assess and to quantify the uncertainty spread from the input factors (parameters and initial states) to the model output, taking into account the effect of the interactions among those factors. Throughout the following works, I treat UA as a graphical assessment of uncertainty propagation based on Monte Carlo simulation, which makes it possible to state a range for the model output in cases where it is considered relevant. On the other hand, I privilege the global approach for SA instead of the local one, since the first attempts to quantify the uncertainty contribution of the model factors in their entire distribution range while the second one is only informative for a single locus in the distribution. In this way, when applying global UA/SA on a model, it is possible to identify those factors that mostly determine the model behavior. Furthermore, I have noticed that the concepts and principles of UA/SA are associated with other main tasks in modeling, as factors estimation and confidence intervals achievement: Briefly, those non-identifiable factors in a model (factors whose value can not be estimated uniquely from some information about output data) should belong to the categories of non-sensible or sensitive but correlated from SA; and, the sub-space of the space of factors where the factors may jointly exist producing a model output that fits, in some extent, to a given output data, could be approximately estimated with UA-based approaches, constituting a new kind of confidence interval. Thus, in this compendium, I present five works related to the applications of UA/SA techniques as well as its relevance. The objective of those applications evolves from the most logically immediate to some derived and more complex ones, though still preserving the model pertinence as a central topic.spa
dc.description.degreelevelTrabajospa
dc.description.degreenameBiólogo(a)spa
dc.format.mimetypeapplication/pdf
dc.identifier.ddc614.4 R741
dc.identifier.instnameinstname:Universidad EAFIT
dc.identifier.reponamereponame:Repositorio Institucional Universidad EAFIT
dc.identifier.repourlrepourl:https://repository.eafit.edu.co
dc.identifier.urihttps://hdl.handle.net/10784/15867
dc.language.isospa
dc.publisherUniversidad EAFITspa
dc.publisher.departmentCiencias Básicasspa
dc.publisher.facultyEscuela de Cienciasspa
dc.publisher.placeMedellínspa
dc.publisher.programBiologíaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.localAcceso abierto
dc.subjectEpidemiologíaspa
dc.subject.keywordUncertainty analysis (UA)spa
dc.subject.keywordSensitivity analysis (SA)spa
dc.subject.keywordApplication of sensitivityspa
dc.subject.keywordMonte Carlo simulationspa
dc.subject.lembCONTROL DE VECTORESspa
dc.subject.lembEPIDEMIOLOGÍA - TÉCNICAspa
dc.subject.lembVIGILANCIA EPIDEMIOLÓGICAspa
dc.titleApplication of sensitivity- and uncertainty-based techniques for the assessment of epidemiological models in real-life study cases
dc.typeinfo:eu-repo/semantics/bachelorThesis
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.localTrabajo de gradospa
dc.type.redcolhttp://purl.org/redcol/resource_type/TP
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication

Archivos

Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
Daniel_RojasDiaz_2019.pdf
Tamaño:
152.91 KB
Formato:
Adobe Portable Document Format
Descripción:
Trabajo de grado
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.5 KB
Formato:
Item-specific license agreed upon to submission
Descripción: