Artículos
URI permanente para esta colección
Examinar
Examinando Artículos por Título
Mostrando 1 - 20 de 110
Resultados por página
Opciones de ordenación
Ítem 2D Shape similarity as a complement for Voronoi-Delone methods in shape reconstruction(Elsevier, 2005) Ruíz S., Óscar E.; Cadavid, Carlos A.; Granados, Miguel; Peña, Sebastián; Vásquez, Eliana; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAEIn surface reconstruction from planar slices it is necessary to build surfaces between corresponding 2D regions in consecutive levels -- The problem has been traditionally attacked with (i) direct reconstruction based on local geometric proximity between the regions, and (ii) classification of topological events between the slices, which control the evolution of the cross cuts -- These approaches have been separately applied with mixed success -- In the case (i), the results may be surfaces with over-stretched or unnatural branches, resulting from a local contour proximity which does not correspond to global similarity between regions -- In (ii), the consequences from topological events upon the actual surface realization have not been drawn -- In this paper an integration of (i) and (ii) is presented, which uses a criteria of similarity between composed 2D regions in consecutive slices to: (a) decide if a surface should actually relate those regions, (b) identify the topological transitions between levels and (c) construct the local surface for the related regions -- The method implemented hinders over-stretched and unnatural branches, therefore rendering a surface which adjusts to geometrically-sound topological events -- This is a good alternative when the surface reconstructed needs to be topologically faithful (for example in flow simulation) in addition to represent the a rough geometrical space (for example in radiation planning)Ítem Accelerated Thermal Simulation for Three-Dimensional Interactive Optimization of Computer Numeric Control Sheet Metal Laser Cutting(American Society of Mechanical Engineers (ASME), 2017-12-21) Mejía, D.; Moreno, Aitor; Arbelaiz, Ander; Posada, Jorge; Ruiz, O.; Chopitea, Raúl; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAEÍtem Accelerated Thermal Simulation for Three-Dimensional Interactive Optimization of Computer Numeric Control Sheet Metal Laser Cutting(American Society of Mechanical Engineers (ASME), 2018-03-01) Mejia D.; Moreno A.; Arbelaiz A.; Posada J.; Ruiz-Salguero O.; Chopitea R.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAEIn the context of computer numeric control (CNC)-based sheet metal laser cutting, the problem of heat transfer simulation is relevant for the optimization of CNC programs. Current physically based simulation tools use numeric or analytic algorithms which provide accurate but slow solutions due to the underlying mathematical description of the model. This paper presents: (1) an analytic solution to the laser heating problem of rectangular sheet metal for curved laser trajectories and convective cooling, (2) a graphics processing unit (GPU) implementation of the analytic solution for fast simulation of the problem, and (3) an integration within an interactive environment for the simulation of sheet metal CNC laser cutting. This analytic approach sacrifices the material removal effect of the laser cut in the favor of an approximated real-time temperature map on the sheet metal. The articulation of thermal, geometric, and graphic feedback in virtual manufacturing environments enables interactive redefinition of the CNC programs for better product quality, lower safety risks, material waste, and energy usage among others. The error with respect to finite element analysis (FEA) in temperature prediction descends as low as 3.5%. Copyright © 2018 by ASME.Ítem Algebraic Geometry and Group Theory in Geometric Constraint Satisfaction for Computer Aided Design and Assembly Planning(1996-01-01) RUIZ, OSCAR EDUARDO; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAEÍtem Algebraic geometry and group theory in geometric constraint satisfaction for computer-aided design and assembly planning(Taylor & Francis, 1996) Ruíz, Óscar E.; Ferreira, Placid M.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAEMechanical design and assembly planning inherently involve geometric constraint satisfaction or scene feasibility (GCS/SF) problems -- Such problems imply the satisfaction of proposed relations placed between undefined geometric entities in a given scenario -- If the degrees of freedom remaining in the scene are compatible with the proposed relations or constraints, a set of entities is produced that populate the scenario satisfying the relations -- Otherwise, a diagnostic of inconsistency of the problem is emitted -- This problem appears in various forms in assembly planning (assembly model generation), process planning, constraint driven design, computer vision, etc -- Previous attempts at solution using separate numerical, symbolic or procedural approaches suffer serious shortcomings in characterizing the solution space, in dealing simultaneously with geometric (dimensional) and topological (relational) inconsistencies, and in completely covering the possible physical variations of the problem -- This investigation starts by formulating the problem as one of characterizing the solution space of a set of polynomials -- By using theories developed in the area of algebraic geometry, properties of Grobner Bases are used to assess the consistency and ambiguity of the given problem and the dimension of its solution space -- This method allows for die integration of geometric and topological reasoning -- The high computational cost of Grobner Basis construction and the need for a compact and physically meaningful set of variables lead to the integration of known results on group theory -- These results allow the characterization of geometric constraints in terms of the subgroups of the Special Group of Euclidean displacements in E^3, SE(3) -- Several examples arc developed which were solved with computer algebra systems (MAPLE and Mathematica) -- They are presented to illustrate the use of the Euclidean group-based variables, and to demonstrate the theoretical completeness of the algebraic geometry analysis over the domain of constraints expressible as polynomialsÍtem Analytical method for the kinetostatic analysis of the second-class RRR ASSUR Group allowing for friction in the kinematic pairs(SciELO Brasil, 2010) Durango, Sebastián; Calle, Gabriel; Ruíz, Oscar; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAEThe calculation of forces in the kinematic pairs of mechanisms by inverse dynamics is usually performed without friction considerations -- In practice, when examination of articulated mechanisms takes into account friction, the solution of the inverse dynamics results in a complex procedure -- If a modular approach for the inverse dynamics is used, then exact solutions are available, but not necessarily are practical -- For example, the analytical solution for a second-class first-type Assur group is a 16th degree equation -- Previous researches proposed an approximated but practical (graphical) method to calculate the forces on the kinematic pairs taking into account the friction forces -- In this article, an analytical interpretation of the Artobolevski approximated method is developed for the second-class Assur group with three rotational pairs -- The final results for the reactions calculated with the implemented method present a good approximation with respect to the graphical solution -- Future work should consider friction forces not only in second-class groups with rotational joints, but also in second-class groups with prismatic joints and high-class Assur groupsÍtem Analytical method for the kinetostatic analysis of the second-class RRR assur group allowing for friction in the kinematic pairs(Springer Berlin Heidelberg, 2010-07-01) Durango, S.; Calle, G.; Ruiz, O.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAEThe calculation of forces in the kinematic pairs of mechanisms by inverse dynamics is usually performed without friction considerations. In practice, when examination of articulated mechanisms takes into account friction, the solution of the inverse dynamics results in a complex procedure. If a modular approach for the inverse dynamics is used, then exact solutions are available, but not necessarily are practical. For example, the analytical solution for a second-class first-type Assur group is a 16th degree equation. Previous researches proposed an approximated but practical (graphical) method to calculate the forces on the kinematic pairs taking into account the friction forces. In this article, an analytical interpretation of the Artobolevski approximated method is developed for the second-class Assur group with three rotational pairs. The final results for the reactions calculated with the implemented method present a good approximation with respect to the graphical solution. Future work should consider friction forces not only in second-class groups with rotational joints, but also in second-class groups with prismatic joints and high-class Assur groups. Copyright © 2010 by ABCM.Ítem Appraisal of open software for finite element simulation of 2D metal sheet laser cut(Springer-Verlag France, 2017-08-01) Mejia, D.; Moreno, A.; Ruiz-Salguero, O.; Barandiaran, I.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAEFEA simulation of thermal metal cutting is central to interactive design and manufacturing. It is therefore relevant to assess the applicability of FEA open software to simulate 2D heat transfer in metal sheet laser cuts. Application of open source code (e.g. FreeFem++, FEniCS, MOOSE) makes possible additional scenarios (e.g. parallel, CUDA, etc.), with lower costs. However, a precise assessment is required on the scenarios in which open software can be a sound alternative to a commercial one. This article contributes in this regard, by presenting a comparison of the aforementioned freeware FEM software for the simulation of heat transfer in thin (i.e. 2D) sheets, subject to a gliding laser point source. We use the commercial ABAQUS software as the reference to compare such open software. A convective linear thin sheet heat transfer model, with and without material removal is used. This article does not intend a full design of computer experiments. Our partial assessment shows that the thin sheet approximation turns to be adequate in terms of the relative error for linear alumina sheets. Under mesh resolutions better than m , the open and reference software temperature differ in at most 1 of the temperature prediction. Ongoing work includes adaptive re-meshing, nonlinearities, sheet stress analysis and Mach (also called 'relativistic') effects.Ítem Appraisal of open software for finite element simulation of 2D metal sheet laser cut.(Springer-Verlag France, 2016-03-21) Mejia, Daniel; Moreno, Aitor; Ruiz Salguero, Oscar; Barandiaran, Inigo; Universidad EAFIT. Departamento de Ingeniería Mecánica. Grupo de Investigación CAD CAM CAE, Carrera 49 7 Sur-50, Medellín, Colombia.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAEFEA simulation of thermal metal cutting is central to interactive design and manufacturing. It is therefore relevant to assess the applicability of FEA open software to simulate 2D heat transfer in metal sheet laser cuts. Application of open source code (e.g. FreeFem++, FEniCS, MOOSE) makes possible additional scenarios (e.g. parallel, CUDA, etc.), with lower costs. However, a precise assessment is required on the scenarios in which open software can be a sound alternative to a commercial one. This article contributes in this regard, by presenting a comparison of the aforementioned freeware FEM software for the simulation of heat transfer in thin (i.e. 2D) sheets, subject to a gliding laser point source. We use the commercial ABAQUS software as the reference to compare such open software. A convective linear thin sheet heat transfer model, with and without material removal is used. This article does not intend a full design of computer experiments. Our partial assessment shows that the thin sheet approximation turns to be adequate in terms of the relative error for linear alumina sheets. Under mesh resolutions better than 10e−5 m , the open and reference software temperature differ in at most 1 % of the temperature prediction. Ongoing work includes adaptive re-meshing, nonlinearities, sheet stress analysis and Mach (also called ‘relativistic’) effects.Ítem Approximation of the mechanical response of large lattice domains using homogenization and design of experiments(Universitatea Politehnica Bucuresti, 2020-01-01) Montoya-Zapata D.; Acosta D.A.; Cortés C.; Pareja-Corcho J.; Moreno A.; Posada J.; Ruiz-Salguero O.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAELattice-based workpieces contain patterned repetition of individuals of a basic topology (Schwarz, ortho-walls, gyroid, etc.) with each individual having distinct geometric grading. In the context of the design, analysis and manufacturing of lattice workpieces, the problem of rapidly assessing the mechanical behavior of large domains is relevant for pre-evaluation of designs. In this realm, two approaches can be identified: (1) numerical simulations which usually bring accuracy but limit the size of the domains that can be studied due to intractable data sizes, and (2) material homogenization strategies that sacrifice precision to favor efficiency and allow for simulations of large domains. Material homogenization synthesizes diluted material properties in a lattice, according to the volume occupancy factor of such a lattice. Preliminary publications show that material homogenization is reasonable in predicting displacements, but is not in predicting stresses (highly sensitive to local geometry). As a response to such shortcomings, this paper presents a methodology that systematically uses design of experiments (DOE) to produce simple mathematical expressions (meta-models) that relate the stress-strain behavior of the lattice domain and the displacements of the homogeneous domain. The implementation in this paper estimates the von Mises stress in large Schwarz primitive lattice domains under compressive loads. The results of our experiments show that (1) material homogenization can efficiently and accurately approximate the displacements field, even in complex lattice domains, and (2) material homogenization and DOE can produce rough estimations of the von Mises stress in large domains (more than 100 cells). The errors in the von Mises stress estimations reach 42% for domains of up to 24 cells. This result means that coarse stress-strain estimations may be possible in lattice domains by combining DOE and homogenized material properties. This option is not suitable for precise stress prediction in sensitive contexts wherein high accuracy is needed. Future work is required to refine the meta-models to improve the accuracies of the estimations. © 2020 by the authors.Ítem Approximation of the Mechanical Response of Large Lattice Domains Using Homogenization and Design of Experiments(Universitatea Politehnica Bucuresti, 2020-06-01) Montoya, D.; Acosta, D.; Cortes, C.; Pareja, J.; Moreno, Aitor; Posada, Jorge; Ruiz, O.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAEÍtem Bi-Curve And Multi-Patch Smoothing With Application To The Shipyard Industry(2007-01-01) RUIZ, OSCAR EDUARDO; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAEÍtem Bi-curve and multi-patch smoothing with application to the shipyard industry(2007) Leiceaga, Xoán A.; Ruíz, Oscar; Vanegas, Carlos; Soto, Eva; Prieto, José; Rodríguez, Manuel; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAEAlgorithms are proposed and implemented in a commercial system which allow for the C1-continuity matching between adjacent B-spline curves and B-spline patches -- These algorithms only manipulate the positions of the control points, therefore respecting the constraint imposed by the sizes of the available commercial steel plates -- The application of the algorithms respect the initial hull partition made by the designers and therefore the number and overall shape and position of the constitutive patches remains unchanged -- Algorithms were designed and tested for smoothing the union of (a) two B-spline curves sharing a common vertex, (b) two B-spline surfaces sharing a common border, and (c) four B-spline surfaces sharing a common vertex -- For this last case, an iterative heuristic degreeof-freedom elimination algorithm was implemented -- Very satisfactory results were obtained with the application of the presented algorithms in shipyards in SpainÍtem Bifurcations and Sequences of Elements in Non-Smooth Systems Cycles(2013-09-01) RUIZ, OSCAR EDUARDO; Arango, Iván Darío; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAEÍtem Bifurcations and Sequences of Elements in Non-Smooth Systems Cycles(Scientific Research Publishing, 2013-09) Arango, Iván; Pineda, Fabio; Ruíz, Óscar; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAEThis article describes the implementation of a novel method for detection and continuation of bifurcations in non- smooth complex dynamic systems -- The method is an alternative to existing ones for the follow-up of associated phe- nomena, precisely in the circumstances in which the traditional ones have limitations (simultaneous impact, Filippov and first derivative discontinuities and multiple discontinuous boundaries) -- The topology of cycles in non-smooth sys- tems is determined by a group of ordered segments and points of different regions and their boundaries -- In this article, we compare the limit cycles of non-smooth systems against the sequences of elements, in order to find patterns -- To achieve this goal, a method was used, which characterizes and records the elements comprising the cycles in the order that they appear during the integration process -- The characterization discriminates: a) types of points and segments; b) direction of sliding segments; and c) regions or discontinuity boundaries to which each element belongs -- When a change takes place in the value of a parameter of a system, our comparison method is an alternative to determine topo- logical changes and hence bifurcations and associated phenomena -- This comparison has been tested in systems with discontinuities of three types: 1) impact; 2) Filippov and 3) first derivative discontinuities -- By coding well-known cy- cles as sequences of elements, an initial comparison database was built -- Our comparison method offers a convenient approach for large systems with more than two regions and more than two sliding segmentsÍtem Boundary Representation of Anatomical Features(2002) Ruíz, Óscar E.; Karangelis, Grigorios; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAEIn Simulationen für Bestrahlungstherapieplanung und andere medizinischen und bioingenieur wissenschaftlichen Anwendungen hat man traditionellerweise die anatomischen Eigenschaften mittels volumenbasierten Techniken angezeigt -- Trotzdem, während der Bedarf an Behandlung, Organsimulation und Erzeugung von Prothese präziser wird, reicht es nicht die Menge und die Position von solchen Features zu wissen, sondern auch Detailstufen, die vergleichbar sind zu denjenigen, die man für ingenieurwissenschaftliche Techniken verwendet (finite element analysis, rapid prototyping, Herstellung, usw.) -- Dieser Artikel präsentiert Bemühungen und Ergebnisse in der Anwendung von computerunterstützten geometrischen Algorithmen auf biomedizinischen Applikationen, wobei diese Algorithmen sich ursprünglich auf die Begrenzung von Formen gerichtet haben, die auf Planarmustern von anatomischen Zielregionen basiertenÍtem Boundary Representation of Anatomical Features(2002-01-01) RUIZ, OSCAR EDUARDO; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAEÍtem Density-sensitive implicit functions using sub-voxel sampling in additive manufacturing(Multidisciplinary Digital Publishing Institute (MDPI), 2019-01-01) Montoya-Zapata D.; Moreno A.; Pareja-Corcho J.; Posada J.; Ruiz-Salguero O.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAEIn the context of lattice-based design and manufacturing, the problem of physical realization of density maps into lattices of a particular family is central. Density maps are prescribed by design optimization algorithms, which seek to fulfill structural demands on a workpiece, while saving material. These density maps cannot be directly manufactured since local graded densities cannot be achieved using the bulk solid material. Because of this reason, existing topology optimization approaches bias the local voxel relative density to either 0 (void) or 1 (filled). Additive manufacturing opens possibilities to produce graded density individuals belonging to different lattice families. However, voxel-level sampled boundary representations of the individuals produce rough and possibly disconnected shells. In response to this limitation, this article uses sub-voxel sampling (largely unexploited in the literature) to generate lattices of graded densities. This sub-voxel sampling eliminates the risk of shell disconnections and renders better surface continuity. The manuscript devises a function to produce Schwarz cells that materialize a given relative density. This article illustrates a correlation of continuity against stress concentration by simulating C0 and C1 inter-lattice continuity. The implemented algorithm produces implicit functions and thus lattice designs which are suitable for metal additive manufacturing and able to achieve the target material savings. The resulting workpieces, produced by outsource manufacturers, are presented. Additional work is required in the modeling of the mechanical response (stress/strain/deformation) and response of large lattice sets (with arbitrary geometry and topology) under working loads. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.Ítem Design of computer experiments applied to modeling of compliant mechanisms for real-time control(SPRINGER, 2013-07-01) Acosta, Diego A.; Restrepo, David; Durango, Sebastian; Ruiz, Oscar E.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAEThis article discusses the use of design of computer experiments (DOCE) (i.e., experiments run with a computer model to find how a set of inputs affects a set of outputs) to obtain a force-displacement meta-model (i.e., a mathematical equation that summarizes and aids in analyzing the input-output data of a DOCE) of compliant mechanisms (CMs). The procedure discussed produces a force-displacement meta-model, or closed analytic vector function, that aims to control CMs in real-time. In our work, the factorial and space-filling DOCE meta-model of CMs is supported by finite element analysis (FEA). The protocol discussed is used to model the HexFlex mechanism functioning under quasi-static conditions. The HexFlex is a parallel CM for nano-manipulation that allows six degrees of freedom (x, y, z, ? x, ? y, ? z ) of its moving platform. In the multi-linear model fit of the HexFlex, the products or interactions proved to be negligible, yielding a linear model (i.e., linear in the inputs) for the operating range. The accuracy of the meta-model was calculated by conducting a set of computer experiments with random uniform distribution of the input forces. Three error criteria were recorded comparing the meta-model prediction with respect to the results of the FEA experiments by determining: (1) maximum of the absolute value of the error, (2) relative error, and (3) root mean square error. The maximum errors of our model are lower than high-precision manufacturing tolerances and are also lower than those reported by other researchers who have tried to fit meta-models to the HexFlex mechanism. © 2012 Springer-Verlag London Limited.Ítem Design of computer experiments applied to modeling of compliant mechanisms for real-time control(Springer London, 2013-07) Acosta, Diego A.; Restrepo, David; Durango, Sebastián; Ruíz, Óscar E.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAEThis article discusses the use of design of computer experiments (DOCE) (i.e., experiments run with a computer model to find how a set of inputs affects a set of outputs) to obtain a force–displacement meta-model (i.e., a mathematical equation that summarizes and aids in analyz-ing the input–output data of a DOCE) of compliant mechanisms (CMs) -- The procedure discussed produces a force–displacement meta-model, or closed analytic vector function, that aims to control CMs in real-time -- In our work, the factorial and space-filling DOCE meta-model of CMs is supported by finite element analysis (FEA) -- The protocol discussed is used to model the HexFlex mechanism functioning under quasi-static conditions -- The HexFlex is a parallel CM for nano-manipulation that allows six degrees of freedom (x, y, z, hx, hy, hz) of its moving platform -- In the multi-linear model fit of the HexFlex, the products or inter-actions proved to be negligible, yielding a linear model (i.e.,linear in the inputs) for the operating range -- The accuracy of the meta-model was calculated by conducting a set of computer experiments with random uniform distribution of the input forces -- Three error criteria were recorded comparing the meta-model prediction with respect to the results of the FEA experiments by determining: (1) maximum of the absolute value of the error, (2) relative error, and (3) root mean square error -- The maximum errors of our model are lower than high-precision manufacturing tolerances and are also lower than those reported by other researchers who have tried to fit meta-models to the HexFlex mechanism