Examinando por Materia "electrocoagulation"
Mostrando 1 - 9 de 9
Resultados por página
Opciones de ordenación
Ítem Assessment of the optimized treatment of indigo-polluted industrial textile wastewater by a sequential electrocoagulation-activated carbon adsorption process(Elsevier Ltd, 2020-01-01) GilPavas E.; Correa-Sanchez S.; Universidad EAFIT. Departamento de Ingeniería de Procesos; Desarrollo y Diseño de ProcesosWastewater collected from a local jean manufacturing plant was treated using an electrocoagulation process (EC) coupled with activated carbon (AC) adsorption. The process variables were optimized using multivariate regression coupled with nonlinear programming with nonlinear restrictions to achieve the lowest possible cost while keeping a high enough degradation rate for chemical oxygen demand (COD), color, and turbidity to fulfill the Colombian environmental regulation requirements. Under optimal conditions (pH = 5.4, s =2 mS/cm, j =14 mA/cm2, and t = 11 min) color, COD, and TOC removals of 95%, 63%, and 51%, respectively, were achieved. The biodegradability index also increased from 0.13 to 0.29, whereas toxicity tests showed a remaining toxicity of 45%. A kinetic study was conducted for the EC process. The activated carbon (AC) adsorption process was successfully used to completely remove toxicity, while further increasing color, COD, and TOC removals to 96%, 72%, and 61%, respectively. The conditions for the AC adsorption process (20 g/L of AC and 1 h) were determined by experimental adsorption isotherms and kinetic studies. The optimized EC/AC process led to an effluent satisfying the Colombian regulations and seems technologically viable with lower costs than other similar process that were reported in previous works. © 2020 Elsevier LtdÍtem Assessment of the optimized treatment of indigo-polluted industrial textile wastewater by a sequential electrocoagulation-activated carbon adsorption process(Elsevier Ltd, 2020-01-01) GilPavas E.; Correa-Sanchez S.; GilPavas E.; Correa-Sanchez S.; Universidad EAFIT. Departamento de Ingeniería de Procesos; Procesos Ambientales (GIPAB)Wastewater collected from a local jean manufacturing plant was treated using an electrocoagulation process (EC) coupled with activated carbon (AC) adsorption. The process variables were optimized using multivariate regression coupled with nonlinear programming with nonlinear restrictions to achieve the lowest possible cost while keeping a high enough degradation rate for chemical oxygen demand (COD), color, and turbidity to fulfill the Colombian environmental regulation requirements. Under optimal conditions (pH = 5.4, s =2 mS/cm, j =14 mA/cm2, and t = 11 min) color, COD, and TOC removals of 95%, 63%, and 51%, respectively, were achieved. The biodegradability index also increased from 0.13 to 0.29, whereas toxicity tests showed a remaining toxicity of 45%. A kinetic study was conducted for the EC process. The activated carbon (AC) adsorption process was successfully used to completely remove toxicity, while further increasing color, COD, and TOC removals to 96%, 72%, and 61%, respectively. The conditions for the AC adsorption process (20 g/L of AC and 1 h) were determined by experimental adsorption isotherms and kinetic studies. The optimized EC/AC process led to an effluent satisfying the Colombian regulations and seems technologically viable with lower costs than other similar process that were reported in previous works. © 2020 Elsevier LtdÍtem Combined electrocoagulation and electro-oxidation of industrial textile wastewater treatment in a continuous multi-stage reactor(IWA PUBLISHING, 2017-11-01) GilPavas; E.; Arbeláez-Castaño; P.; Medina; J.; Acosta; D.A.; GilPavas; E.; Arbeláez-Castaño; P.; Medina; J.; Acosta; D.A.; Universidad EAFIT. Departamento de Ingeniería de Procesos; Procesos Ambientales (GIPAB)A combined electrocoagulation (EC) and electrochemical oxidation (EO) industrial textile wastewater treatment potential is evaluated in this work. A fractional factorial design of experiment showed that EC current density, followed by pH, were the most significant factors. Conductivity and number of electrooxidation cells did not affect chemical oxygen demand degradation (DCOD). Aluminum and iron anodes performed similarly as sacrificial anodes. Current density, pH and conductivity were chosen for a Box-Behnken design of experiment to determine optimal conditions to achieve a high DCOD minimizing operating cost (OC). The optimum to achieve a 70% DCOD with an OC of USD 1.47/m(3) was: pH of 4, a conductivity of 3.7 mS/cm and a current density of 4.1 mA/cm(2). This study also shows the applicability of a combined EC/EO treatment process of a real complex industrial wastewater.Ítem Combined electrocoagulation and electro-oxidation of industrial textile wastewater treatment in a continuous multi-stage reactor(IWA PUBLISHING, 2017-11-01) GilPavas; E.; Arbeláez-Castaño; P.; Medina; J.; Acosta; D.A.; Universidad EAFIT. Departamento de Ingeniería de Procesos; Desarrollo y Diseño de ProcesosA combined electrocoagulation (EC) and electrochemical oxidation (EO) industrial textile wastewater treatment potential is evaluated in this work. A fractional factorial design of experiment showed that EC current density, followed by pH, were the most significant factors. Conductivity and number of electrooxidation cells did not affect chemical oxygen demand degradation (DCOD). Aluminum and iron anodes performed similarly as sacrificial anodes. Current density, pH and conductivity were chosen for a Box-Behnken design of experiment to determine optimal conditions to achieve a high DCOD minimizing operating cost (OC). The optimum to achieve a 70% DCOD with an OC of USD 1.47/m(3) was: pH of 4, a conductivity of 3.7 mS/cm and a current density of 4.1 mA/cm(2). This study also shows the applicability of a combined EC/EO treatment process of a real complex industrial wastewater.Ítem Optimization and toxicity assessment of a combined electrocoagulation, H2O2/Fe2+/UV and activated carbon adsorption for textile wastewater treatment(Elsevier, 2019-02-15) GilPavas, E; Dobrosz-Gomez, I; Gomez-Garcia, MA; GilPavas, E; Dobrosz-Gomez, I; Gomez-Garcia, MA; Universidad EAFIT. Departamento de Ingeniería de Procesos; Procesos Ambientales (GIPAB)In this study, the potential application of sequential Electrocoagulation + Fenton (F) or Photo-Fenton (PF) + Active carbon adsorption (EC + F/PF + AC) processes were analyzed as alternatives for the treatment of an industrial textile wastewater resulting from an industrial facility located in Medellín (Colombia). In order to maximize the organic matter degradation, each step of the treatment was optimized using the Response Surface Methodology. At first, the optimal performance of EC was achieved with Fe electrodes operating at pH = 7, jEC = 10 mA/cm2 and 60 rpm, during 10 min of electrolysis. At these conditions, EC let to remove 94% of the dye's color, 56% of the COD and 54% of the TOC. Next, sequentially applied Fenton or photo-Fenton process (i.e., EC + F/PF), operating at the optimized conditions (pH = 4.3, [Fe2+] = 1.1 mM, [H2O2] = 9.7 mM, stirring velocity = 100 rpm and reaction time = 60 min.), improved the quality of the treated effluent. The EC + F let to achieve total color reduction, as well as COD and TOC removals of 72 and 75%, respectively. The EC + PF reached 100% of color, 76% of COD and 78% of TOC reductions. The EC + F/PF processes were more efficient than EC in elimination of low molecular weight (<5 kDa) compounds from wastewater. Moreover, the BOD5/COD ratio increased from 0.21 to 0.42 and from 0.21 to 0.46 using EC + F and EC + PF processes, respectively. However, EC + F/PF were not fully effective for the removal of acute toxicity to Artemia salina: 20% and 60% of reduction in toxicity using EC + F and EC + PF, respectively, comparing to very toxic (100%) raw textile wastewater. Thus, activated carbon adsorption was applied as an additional step to complete the treatment. After AC adsorption, the acute toxicity decreased to 10% and 0% using EC + F and EC + PF, respectively. The total operational costs, including chemical reagents, electrodes, energy consumption and sludge disposal, were of 1.65 USD/m3 and 2.3 USD/m3 for EC + F and EC + PF, respectively. © 2018 Elsevier B.V.Ítem Optimization and toxicity assessment of a combined electrocoagulation, H2O2/Fe2+/UV and activated carbon adsorption for textile wastewater treatment(Elsevier, 2019-02-15) GilPavas, E; Dobrosz-Gomez, I; Gomez-Garcia, MA; Universidad EAFIT. Departamento de Ingeniería de Procesos; Desarrollo y Diseño de ProcesosIn this study, the potential application of sequential Electrocoagulation + Fenton (F) or Photo-Fenton (PF) + Active carbon adsorption (EC + F/PF + AC) processes were analyzed as alternatives for the treatment of an industrial textile wastewater resulting from an industrial facility located in Medellín (Colombia). In order to maximize the organic matter degradation, each step of the treatment was optimized using the Response Surface Methodology. At first, the optimal performance of EC was achieved with Fe electrodes operating at pH = 7, jEC = 10 mA/cm2 and 60 rpm, during 10 min of electrolysis. At these conditions, EC let to remove 94% of the dye's color, 56% of the COD and 54% of the TOC. Next, sequentially applied Fenton or photo-Fenton process (i.e., EC + F/PF), operating at the optimized conditions (pH = 4.3, [Fe2+] = 1.1 mM, [H2O2] = 9.7 mM, stirring velocity = 100 rpm and reaction time = 60 min.), improved the quality of the treated effluent. The EC + F let to achieve total color reduction, as well as COD and TOC removals of 72 and 75%, respectively. The EC + PF reached 100% of color, 76% of COD and 78% of TOC reductions. The EC + F/PF processes were more efficient than EC in elimination of low molecular weight (<5 kDa) compounds from wastewater. Moreover, the BOD5/COD ratio increased from 0.21 to 0.42 and from 0.21 to 0.46 using EC + F and EC + PF processes, respectively. However, EC + F/PF were not fully effective for the removal of acute toxicity to Artemia salina: 20% and 60% of reduction in toxicity using EC + F and EC + PF, respectively, comparing to very toxic (100%) raw textile wastewater. Thus, activated carbon adsorption was applied as an additional step to complete the treatment. After AC adsorption, the acute toxicity decreased to 10% and 0% using EC + F and EC + PF, respectively. The total operational costs, including chemical reagents, electrodes, energy consumption and sludge disposal, were of 1.65 USD/m3 and 2.3 USD/m3 for EC + F and EC + PF, respectively. © 2018 Elsevier B.V.Ítem Recuperar aguas residuales para reducir costos y ser sostenibles(Universidad EAFIT, 2020-12-01) Martinez Guerrero, Christian Alexander; Martinez-Guerrero, Christian Alexander; GilPavas, Edison; Correa Sanchez, Santiago; Procesos AmbientalesÍtem The removal of the trivalent chromium from the leather tannery wastewater: the optimisation of the electro-coagulation process parameters.(IWA PUBLISHING, 2011-02-01) GilPavas, E.; Dobrosz-Gomez, I.; Gomez-Garcia, M. A.; GilPavas, E.; Dobrosz-Gomez, I.; Gomez-Garcia, M. A.; Universidad EAFIT. Departamento de Ingeniería de Procesos; Procesos Ambientales (GIPAB)The capacity of the electro-coagulation (EC) process for the treatment of the wastewater containing Cr3+, resulting from a leather tannery industry placed in Medellin (Colombia), was evaluated. In order to assess the effect of some parameters, such as: the electrode type (Al and/or Fe), the distance between electrodes, the current density, the stirring velocity, and the initial Cr3+ concentration on its efficiency of removal (%RCr+3), a multifactorial experimental design was used. The %RCr3+ was defined as the response variable for the statistical analysis. In order to optimise the operational values for the chosen parameters, the response surface method (RSM) was applied. Additionally, the Biological Oxygen Demand (BOD5), the Chemical Oxygen Demand (COD), and the Total Organic Carbon (TOC) were monitored during the EC process. The electrodes made of aluminium appeared to be the most effective in the chromium removal from the wastewater under study. At pH equal to 4.52 and at 28 degrees C, the optimal conditions of Cr3+ removal using the EC process were found, as follows: the initial Cr3+ concentration=3,596 mg/L, the electrode gap=0.5 cm, the stirring velocity=382.3 rpm, and the current density=57.87 mA/cm2. At those conditions, it was possible to reach 99.76% of Cr3+ removal, and 64% and 61% of mineralisation (TOC) and COD removal, respectively. A kinetic analysis was performed in order to verify the response capacity of the EC process at optimised parameter values.Ítem Treatment of automotive industry oily wastewater by electrocoagulation: statistical optimization of the operational parameters.(IWA PUBLISHING, 2009-11-01) GilPavas, Edison; Molina-Tirado, Kevin; Angel Gomez-Garcia, Miguel; GilPavas, Edison; Molina-Tirado, Kevin; Angel Gomez-Garcia, Miguel; Universidad EAFIT. Departamento de Ingeniería de Procesos; Procesos Ambientales (GIPAB)An electrocoagulation process was used for the treatment of oily wastewater generated from an automotive industry in Medellin (Colombia). An electrochemical cell consisting of four parallel electrodes (Fe and Al) in bipolar configuration was implemented. A multifactorial experimental design was used for evaluating the influence of several parameters including: type and arrangement of electrodes, pH, and current density. Oil and grease removal was defined as the response variable for the statistical analysis. Additionally, the BOD(5), COD, and TOC were monitored during the treatment process. According to the results, at the optimum parameter values (current density = 4.3 mA/cm(2), distance between electrodes = 1.5 cm, Fe as anode, and pH = 12) it was possible to reach a c.a. 95% oils removal, COD and mineralization of 87.4% and 70.6%, respectively. A final biodegradability (BOD(5)/COD) of 0.54 was reached.