Examinando por Materia "Bite Force"
Mostrando 1 - 7 de 7
Resultados por página
Opciones de ordenación
Ítem Design and construction of a transducer for bite force registration.(ELSEVIER SCI LTD, 2009-05-29) Isaza JF; Throckmorton GS; Roldán SI; Universidad EAFIT. Departamento de Ingeniería Mecánica; Bioingeniería GIB (CES – EAFIT)This study describes the development of a system for quantification of human biting forces by (1) determining the mechanical properties of an epoxy resin reinforced with carbon fiber, (2) establishing the transducer's optimal dimensions to accommodate teeth of various widths while minimizing transducer thickness, and (3) determining the optimal location of strain gages using a series of mechanical resistance and finite element (FE) analyses. The optimal strain gage location was defined as the position that produced the least difference in strain pattern when the load was applied by teeth with two different surface areas. The result is a 7.3-mm-thick transducer with a maximum load capacity beyond any expected maximum bite force (1500N). This system includes a graphic interface that easily allows acquisition and registration of bite force by any health-sciences or engineering professional.Ítem Design and construction of a transducer for bite force registration.(ELSEVIER SCI LTD, 2009-05-29) Isaza JF; Throckmorton GS; Roldán SI; Universidad EAFIT. Departamento de Ingeniería de Diseño; Ingeniería de Diseño (GRID)This study describes the development of a system for quantification of human biting forces by (1) determining the mechanical properties of an epoxy resin reinforced with carbon fiber, (2) establishing the transducer's optimal dimensions to accommodate teeth of various widths while minimizing transducer thickness, and (3) determining the optimal location of strain gages using a series of mechanical resistance and finite element (FE) analyses. The optimal strain gage location was defined as the position that produced the least difference in strain pattern when the load was applied by teeth with two different surface areas. The result is a 7.3-mm-thick transducer with a maximum load capacity beyond any expected maximum bite force (1500N). This system includes a graphic interface that easily allows acquisition and registration of bite force by any health-sciences or engineering professional.Ítem Evaluation of the structural behavior of three and four implant-supported fixed prosthetic restorations by finite element analysis.(ELSEVIER IRELAND LTD, 2012-04-01) Correa S; Ivancik J; Isaza JF; Naranjo M; Universidad EAFIT. Departamento de Ingeniería de Diseño; Ingeniería de Diseño (GRID)PURPOSE: There is much controversy about the minimum number of implants and maximum cantilever length in mandible prosthetic restoration. Finite elements analysis of three and four implant-supported prostheses was performed to determine the stresses in the superstructure, implants and cortical bone and, therefore, the failure prediction for each restoration. METHODS: An edentulous mandible was modeled from CT scan images. Two finite element models of three and four implant-supported prostheses with cantilever lengths of 10 and 15 mm were created. Occlusal loads in different parts of the superstructure were applied and shear and normal stresses were calculated. RESULTS: Two failure criteria were analyzed: the von Mises criterion for isotropic materials (superstructure and implants) and the Tsai-Wu criterion for transversely isotropic material (cortical bone). Both criteria predict failure in the three implant-supported prosthesis for all cases analyzed. The same applies for the four-implant prosthesis of 15 mm cantilever length. However, four implants and a cantilever length of 10mm passed the failure criteria and were considered safe. CONCLUSIONS: The results from the patient analyzed showed that fixed support prostheses on three implants are not recommended from a structural point of view because they do not adequately support occlusal loads. Excessive stress in the superstructure and the cortical bone can be expected, which would anticipate the failure of the restoration. Fixed support prostheses on four implants with a cantilever length of 10mm properly resist occlusal loading.Ítem Evaluation of the structural behavior of three and four implant-supported fixed prosthetic restorations by finite element analysis.(ELSEVIER IRELAND LTD, 2012-04-01) Correa S; Ivancik J; Isaza JF; Naranjo M; Universidad EAFIT. Departamento de Ingeniería Mecánica; Bioingeniería GIB (CES – EAFIT)PURPOSE: There is much controversy about the minimum number of implants and maximum cantilever length in mandible prosthetic restoration. Finite elements analysis of three and four implant-supported prostheses was performed to determine the stresses in the superstructure, implants and cortical bone and, therefore, the failure prediction for each restoration. METHODS: An edentulous mandible was modeled from CT scan images. Two finite element models of three and four implant-supported prostheses with cantilever lengths of 10 and 15 mm were created. Occlusal loads in different parts of the superstructure were applied and shear and normal stresses were calculated. RESULTS: Two failure criteria were analyzed: the von Mises criterion for isotropic materials (superstructure and implants) and the Tsai-Wu criterion for transversely isotropic material (cortical bone). Both criteria predict failure in the three implant-supported prosthesis for all cases analyzed. The same applies for the four-implant prosthesis of 15 mm cantilever length. However, four implants and a cantilever length of 10mm passed the failure criteria and were considered safe. CONCLUSIONS: The results from the patient analyzed showed that fixed support prostheses on three implants are not recommended from a structural point of view because they do not adequately support occlusal loads. Excessive stress in the superstructure and the cortical bone can be expected, which would anticipate the failure of the restoration. Fixed support prostheses on four implants with a cantilever length of 10mm properly resist occlusal loading.Ítem The global impact of sutures assessed in a finite element model of a macaque cranium(WILEY-LISS, 2010-09-01) Wang, Qian; Smith, Amanda L.; Strait, David S.; Wright, Barth W.; Richmond, Brian G.; Grosse, Ian R.; Byron, Craig D.; Zapata, Uriel; Universidad EAFIT. Departamento de Ingeniería Mecánica; Bioingeniería GIB (CES – EAFIT)The biomechanical significance of cranial sutures in primates is an open question because their global impact is unclear, and their material properties are difficult to measure. In this study, eight suture-bone functional units representing eight facial sutures were created in a finite element model of a monkey cranium. All the sutures were assumed to have identical isotropic linear elastic material behavior that varied in different modeling experiments, representing either fused or unfused sutures. The values of elastic moduli employed in these trials ranged over several orders of magnitude. Each model was evaluated under incisor, premolar, and molar biting conditions. Results demonstrate that skulls with unfused sutures permitted more deformations and experienced higher total strain energy. However, strain patterns remained relatively unaffected away from the suture sites, and bite reaction force was likewise barely affected. These findings suggest that suture elasticity does not substantially alter load paths through the macaque skull or its underlying rigid body kinematics. An implication is that, for the purposes of finite element analysis, omitting or fusing sutures is a reasonable modeling approximation for skulls with small suture volume fraction if the research objective is to observe general patterns of craniofacial biomechanics under static loading conditions. The manner in which suture morphology and ossification affect the mechanical integrity of skulls and their ontogeny and evolution awaits further investigation, and their viscoelastic properties call for dynamic simulations. © 2010 Wiley-Liss, Inc.Ítem Reliability of maximum bite force measurements in age-varying populations(WILEY-BLACKWELL PUBLISHING, INC, 2009-11-01) RoldÁn, S.; Buschang, P.H.; Isaza Saldarriaga, J.F.; Throckmorton, G.; Universidad EAFIT. Departamento de Ingeniería de Diseño; Ingeniería de Diseño (GRID)Summary In order for bite forces to be used clinically, they must be reliable. While bite force transducers are accurate and precise during bench tests, widely varying reliabilities of intra-oral bite forces have been reported when measured in human subjects. Because few studies have reported total reliability, the clinical use of intra-oral bite forces measurements remains questionable. The purposes of this study were to (i) estimate total reliability, including both within- and between-session reliabilities, of repeated maximum incisor and molar bite force measurements and (ii) demonstrate how extraneous variation affects reliability by comparing estimates for which the effects of age have and have not been controlled. A sample of 28 healthy subjects with Class I normal occlusion (seven subjects in each of four age groups: 5, 8, 11 and 14 years) performed two sessions approximately 90 min apart. Each session consisted of three maximum voluntary bites at three bite positions (incisor and right and left molars). For each bite position, between-subject variance (true variance), between-session variance and within-session variance were calculated using Multilevel modelling procedures. The variances were used to estimate between-session reliabilities, within-session reliabilities and total reliabilities. Within-session reliabilities were substantially higher than between-session reliabilities, which in turn was higher than total reliabilities at all bite positions. Reliabilities were highest at the incisor bite position. Not controlling for age effects substantially overestimated total reliability at all bite positions. After controlling for age effects, total reliabilities of repeated maximum bite forces were low to moderate. © 2009 Blackwell Publishing Ltd.Ítem Reliability of maximum bite force measurements in age-varying populations(WILEY-BLACKWELL PUBLISHING, INC, 2009-11-01) RoldÁn, S.; Buschang, P.H.; Isaza Saldarriaga, J.F.; Throckmorton, G.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Bioingeniería GIB (CES – EAFIT)Summary In order for bite forces to be used clinically, they must be reliable. While bite force transducers are accurate and precise during bench tests, widely varying reliabilities of intra-oral bite forces have been reported when measured in human subjects. Because few studies have reported total reliability, the clinical use of intra-oral bite forces measurements remains questionable. The purposes of this study were to (i) estimate total reliability, including both within- and between-session reliabilities, of repeated maximum incisor and molar bite force measurements and (ii) demonstrate how extraneous variation affects reliability by comparing estimates for which the effects of age have and have not been controlled. A sample of 28 healthy subjects with Class I normal occlusion (seven subjects in each of four age groups: 5, 8, 11 and 14 years) performed two sessions approximately 90 min apart. Each session consisted of three maximum voluntary bites at three bite positions (incisor and right and left molars). For each bite position, between-subject variance (true variance), between-session variance and within-session variance were calculated using Multilevel modelling procedures. The variances were used to estimate between-session reliabilities, within-session reliabilities and total reliabilities. Within-session reliabilities were substantially higher than between-session reliabilities, which in turn was higher than total reliabilities at all bite positions. Reliabilities were highest at the incisor bite position. Not controlling for age effects substantially overestimated total reliability at all bite positions. After controlling for age effects, total reliabilities of repeated maximum bite forces were low to moderate. © 2009 Blackwell Publishing Ltd.