Laboratorio CAD/CAM/CAE
URI permanente para esta comunidad
Está en la capacidad de prestar servicios y entrenar asistentes para el mercado internacional en investigación y desarrollo de herramientas para diseño, manufactura y mecánica asistidos por computador (CAD/CAM/CAE).
Líneas de investigación: Applied Computational Geometry; Computational Mechanics; Computer Aided Geometric Design; Computer Aided Manufacturing; Geometric Modeling of Cultural Heritage; Geometric Modeling of Materials; Geometric Modeling of Terrain and Coastal Areas; Medical Images; Medical Kinematics; Robot Kinematics.
Código Minciencias: COL0013067.
Categoría 2019: A1.
Escuela: Ingeniería.
Departamento académico: Ingeniería Mecánica.
Coordinador: Juan Manuel Rodríguez Prieto.
Correo electrónico:jmrodrigup@eafit.edu.co
Líneas de investigación: Applied Computational Geometry; Computational Mechanics; Computer Aided Geometric Design; Computer Aided Manufacturing; Geometric Modeling of Cultural Heritage; Geometric Modeling of Materials; Geometric Modeling of Terrain and Coastal Areas; Medical Images; Medical Kinematics; Robot Kinematics.
Código Minciencias: COL0013067.
Categoría 2019: A1.
Escuela: Ingeniería.
Departamento académico: Ingeniería Mecánica.
Coordinador: Juan Manuel Rodríguez Prieto.
Correo electrónico:jmrodrigup@eafit.edu.co
Examinar
Examinando Laboratorio CAD/CAM/CAE por Autor "Arbelaiz A."
Mostrando 1 - 4 de 4
Resultados por página
Opciones de ordenación
Ítem Accelerated Thermal Simulation for Three-Dimensional Interactive Optimization of Computer Numeric Control Sheet Metal Laser Cutting(American Society of Mechanical Engineers (ASME), 2018-03-01) Mejia D.; Moreno A.; Arbelaiz A.; Posada J.; Ruiz-Salguero O.; Chopitea R.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAEIn the context of computer numeric control (CNC)-based sheet metal laser cutting, the problem of heat transfer simulation is relevant for the optimization of CNC programs. Current physically based simulation tools use numeric or analytic algorithms which provide accurate but slow solutions due to the underlying mathematical description of the model. This paper presents: (1) an analytic solution to the laser heating problem of rectangular sheet metal for curved laser trajectories and convective cooling, (2) a graphics processing unit (GPU) implementation of the analytic solution for fast simulation of the problem, and (3) an integration within an interactive environment for the simulation of sheet metal CNC laser cutting. This analytic approach sacrifices the material removal effect of the laser cut in the favor of an approximated real-time temperature map on the sheet metal. The articulation of thermal, geometric, and graphic feedback in virtual manufacturing environments enables interactive redefinition of the CNC programs for better product quality, lower safety risks, material waste, and energy usage among others. The error with respect to finite element analysis (FEA) in temperature prediction descends as low as 3.5%. Copyright © 2018 by ASME.Ítem Fast analytic simulation for multi-laser heating of sheet metal in GPU(MDPI AG, 2018-11-01) Mejia-Parra D.; Montoya-Zapata D.; Arbelaiz A.; Moreno A.; Posada J.; Ruiz-Salguero O.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAEInteractive multi-beam laser machining simulation is crucial in the context of tool path planning and optimization of laser machining parameters. Current simulation approaches for heat transfer analysis (1) rely on numerical Finite Element methods (or any of its variants), non-suitable for interactive applications; and (2) require the multiple laser beams to be completely synchronized in trajectories, parameters and time frames. To overcome this limitation, this manuscript presents an algorithm for interactive simulation of the transient temperature field on the sheet metal. Contrary to standard numerical methods, our algorithm is based on an analytic solution in the frequency domain, allowing arbitrary time/space discretizations without loss of precision and non-monotonic retrieval of the temperature history. In addition, the method allows complete asynchronous laser beams with independent trajectories, parameters and time frames. Our implementation in a GPU device allows simulations at interactive rates even for a large amount of simultaneous laser beams. The presented method is already integrated into an interactive simulation environment for sheet cutting. Ongoing work addresses thermal stress coupling and laser ablation. © 2018 by the authors.Ítem Fast simulation of laser heating processes on thin metal plates with FFT using CPU/GPU hardware(Universitatea Politehnica Bucuresti, 2020-01-01) Mejia-Parra D.; Arbelaiz A.; Ruiz-Salguero O.; Lalinde-Pulido J.; Moreno A.; Posada J.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAEIn flexible manufacturing systems, fast feedback from simulation solutions is required for effective tool path planning and parameter optimization. In the particular sub-domain of laser heating/cutting of thin rectangular plates, current state-of-the-art methods include frequency-domain (spectral) analytic solutions that greatly reduce the required computational time in comparison to industry standard finite element based approaches. However, these spectral solutions have not been presented previously in terms of Fourier methods and Fast Fourier Transform (FFT) implementations. This manuscript presents four different schemes that translate the problem of laser heating of rectangular plates into equivalent FFT problems. The presented schemes make use of the FFT algorithm to reduce the computational time complexity of the problem from O(M2N2) to O(MN log(MN)) (with M× N being the discretization size of the plate). The test results show that the implemented schemes outperform previous non-FFT approaches both in CPU and GPU hardware, resulting in 100× faster runs. Future work addresses thermal/stress analysis, non-rectangular geometries and non-linear interactions (such as material melting/ablation, convection and radiation heat transfer). © 2020 by the authors.Ítem Fast Spectral Formulations of Thin Plate Laser Heating with GPU Implementation(Institute of Electrical and Electronics Engineers Inc., 2020-01-01) Mejia-Parra D.; Arbelaiz A.; Moreno A.; Posada J.; Ruiz-Salguero O.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAEIn the context of numerical methods, the problem of frequency-domain (spectral) simulations is crucial for the solution of Partial Differential Equations. Fast Fourier Transform (FFT) algorithms significantly reduce the computational cost of such simulations and enable parallelization using Graphics Processing Units (GPUs). In the particular subdomain of laser heating/cutting of rectangular metal plates, fast simulation is required for tool path planning, parameter optimization and additive manufacturing. The currently used methods include frequency-domain analytic solutions for single-beam and multi-beam laser heating. However, the problem of formulating these spectral problems in terms of Fourier methods and implementing them in efficient manner remains. To overcome these limitations, this article presents two different schemes that translate the problem of laser beam heating of metal plates into equivalent FFT problems. The results show significant improvements in terms of executions times, being 100× faster than current state-of-the-art algorithms. Future work needed involves the inclusion of stress analysis, complex plate geometries and non-constant material properties for the plate. © 2020 IEEE.