Frequency-domain analytic method for efficient thermal simulation under curved trajectories laser heating

dc.citation.journalTitleMATHEMATICS AND COMPUTERS IN SIMULATIONeng
dc.contributor.authorMejia-Parra D.
dc.contributor.authorMoreno A.
dc.contributor.authorPosada J.
dc.contributor.authorRuiz-Salguero O.
dc.contributor.authorBarandiaran I.
dc.contributor.authorPoza J.C.
dc.contributor.authorChopitea R.
dc.contributor.departmentUniversidad EAFIT. Departamento de Ingeniería Mecánicaspa
dc.contributor.researchgroupLaboratorio CAD/CAM/CAEspa
dc.date.accessioned2021-04-16T21:59:58Z
dc.date.available2021-04-16T21:59:58Z
dc.date.issued2019-01-01
dc.description.abstractIn the context of Computer Simulation, the problem of heat transfer analysis of thin plate laser heating is relevant for downstream simulations of machining processes. Alternatives to address the problem include (i) numerical methods, which require unaffordable time and storage computing resources even for very small domains, (ii) analytical methods, which are less expensive but are limited to simple geometries, straight trajectories and do not account for material non-linearities or convective cooling. This manuscript presents a parallel efficient analytic method to determine, in a thin plate under convective cooling, the transient temperature field resulting from application of a laser spot following a curved trajectory. Convergence of both FEA (Finite Element Analysis) and the analytic approaches for a small planar plate is presented, estimating a maximum relative error for the analytic approach below 3.5% at the laser spot. Measured computing times evidence superior efficiency of the analytic approach w.r.t. FEA. A study case, with the analytic solution, for a large spatial and time domain (1m×1m and 12s history, respectively) is presented. This case is not tractable with FEA, where domains larger than 0.05m×0.05m and 2s require high amounts of computing time and storage. © 2019 International Association for Mathematics and Computers in Simulation (IMACS)eng
dc.identifierhttps://eafit.fundanetsuite.com/Publicaciones/ProdCientif/PublicacionFrw.aspx?id=8780
dc.identifier.doi10.1016/j.matcom.2019.05.006
dc.identifier.issn3784754
dc.identifier.issn18727166spa
dc.identifier.otherWOS;000483333300011
dc.identifier.otherSCOPUS;2-s2.0-85066235471
dc.identifier.urihttp://hdl.handle.net/10784/29547
dc.languageeng
dc.publisherElsevier BV
dc.relation.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85066235471&doi=10.1016%2fj.matcom.2019.05.006&partnerID=40&md5=a0414f72af98f2e53ff1e53fe5894f82
dc.rightshttps://v2.sherpa.ac.uk/id/publication/issn/0378-4754
dc.sourceMATHEMATICS AND COMPUTERS IN SIMULATION
dc.subject.keywordCoolingeng
dc.subject.keywordFrequency domain analysiseng
dc.subject.keywordHeat transfereng
dc.subject.keywordLaser heatingeng
dc.subject.keywordMachiningeng
dc.subject.keywordNumerical methodseng
dc.subject.keywordParallel processing systemseng
dc.subject.keywordTemperatureeng
dc.subject.keywordTrajectorieseng
dc.subject.keywordAnalytic solutioneng
dc.subject.keywordEfficient simulationeng
dc.subject.keywordHeat transfer analysiseng
dc.subject.keywordMaterial non-linearityeng
dc.subject.keywordMaximum relative errorseng
dc.subject.keywordThermal simulationseng
dc.subject.keywordThin plateeng
dc.subject.keywordTransient temperature fieldseng
dc.subject.keywordTime domain analysiseng
dc.titleFrequency-domain analytic method for efficient thermal simulation under curved trajectories laser heatingeng
dc.typeinfo:eu-repo/semantics/articleeng
dc.typearticleeng
dc.typeinfo:eu-repo/semantics/publishedVersioneng
dc.typepublishedVersioneng
dc.type.localArtículospa

Archivos

Colecciones