Movement in video classification using structured data : Workout videos application
dc.contributor.advisor | Tabares Betancur, Marta Silvia | spa |
dc.contributor.author | Múnera Muñoz, Jonathan Damián | |
dc.coverage.spatial | Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees | eng |
dc.creator.degree | Magíster en Ingeniería | spa |
dc.creator.email | jdmuneram@eafit.edu.co | spa |
dc.date.accessioned | 2023-08-22T19:56:38Z | |
dc.date.available | 2023-08-22T19:56:38Z | |
dc.date.issued | 2023 | |
dc.description.abstract | Nowadays, several video movement classification methodologies are based on reading and processing each frame using image classification algorithms. However, it is rare to find approaches using angle distribution over time. This paper proposes video movement classification based on the exercise states calculated from each frame's angles. Different video classification approaches and their respective variables and models were analyzed to achieve this, using unstructured data: images. Besides, structure data as angles from critical joints Armpits, legs, elbows, hips, and torso inclination were calculated directly from workout videos, allowing the implementation of classification models such as the KNN and Decision Trees. The result shows these techniques can achieve similar accuracy, close to 95\%, concerning Neural Networks algorithms, the primary model used in the previously mentioned approaches. Finally, it was possible to conclude that using structured data for movement classification models allows for lower performance costs and computing resources than using unstructured data without compromising the quality of the model. | spa |
dc.format | application/pdf | eng |
dc.identifier.ddc | 006.696 M965 | |
dc.identifier.uri | http://hdl.handle.net/10784/32815 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad EAFIT | spa |
dc.publisher.department | Escuela de Ciencias Aplicadas e Ingeniería | spa |
dc.publisher.place | Medellín | spa |
dc.publisher.program | Maestría en Ingeniería | spa |
dc.rights | Todos los derechos reservados | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.local | Acceso abierto | spa |
dc.subject | Visión computacional | spa |
dc.subject | Redes neuronales | spa |
dc.subject | Procesamiento de imagen | spa |
dc.subject.keyword | Machine learning | spa |
dc.subject.keyword | Deep learning | spa |
dc.subject.lemb | APRENDIZAJE AUTOMÁTICO (INTELIGENCIA ARTIFICIAL) | spa |
dc.subject.lemb | ALGORITMOS (COMPUTADORES) | spa |
dc.subject.lemb | PROCESAMIENTO DE IMÁGENES | spa |
dc.title | Movement in video classification using structured data : Workout videos application | spa |
dc.type | masterThesis | eng |
dc.type | info:eu-repo/semantics/masterThesis | eng |
dc.type.hasVersion | acceptedVersion | eng |
dc.type.local | Tesis de Maestría | spa |
dc.type.spa | Artículo | spa |
Archivos
Bloque original
1 - 3 de 3
No hay miniatura disponible
- Nombre:
- JonathanDamian_MuneraMunoz_2023.pdf
- Tamaño:
- 862.83 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Trabajo de grado
No hay miniatura disponible
- Nombre:
- carta_aprobacion_trabajo_grado_eafit.pdf
- Tamaño:
- 121.05 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Carta de aprobación de tesis de grado
No hay miniatura disponible
- Nombre:
- formulario_autorizacion_publicacion_obras.pdf
- Tamaño:
- 1.01 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Formulario de autorización de publicación de obras
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 2.5 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: