Tuning of Adaptive Weight Depth Map Generation Algorithms Exploratory Data Analysis and Design of Computer Experiments (DOCE)
dc.citation.epage | 12 | spa |
dc.citation.issue | 1 | spa |
dc.citation.journalTitle | Journal of Mathematical Imaging and Vision | eng |
dc.citation.journalTitle | Journal of Mathematical Imaging and Vision | spa |
dc.citation.spage | 3 | spa |
dc.citation.volume | 47 | spa |
dc.contributor.author | Acosta, Diego | |
dc.contributor.author | Congote, John | |
dc.contributor.author | Barandiaran, Iñigo | |
dc.contributor.author | Ruíz, Óscar | |
dc.contributor.author | Hoyos, Alejandro | |
dc.contributor.author | Graña, Manuel | |
dc.contributor.department | Universidad EAFIT. Departamento de Ingeniería Mecánica | spa |
dc.contributor.researchgroup | Laboratorio CAD/CAM/CAE | spa |
dc.date.accessioned | 2016-11-18T22:11:15Z | |
dc.date.available | 2016-11-18T22:11:15Z | |
dc.date.issued | 2013-09 | |
dc.description.abstract | In depth map generation algorithms, parameters settings to yield an accurate disparity map estimation are usually chosen empirically or based on un planned experiments -- Algorithms' performance is measured based on the distance of the algorithm results vs. the Ground Truth by Middlebury's standards -- This work shows a systematic statistical approach including exploratory data analyses on over 14000 images and designs of experiments using 31 depth maps to measure the relative inf uence of the parameters and to fine-tune them based on the number of bad pixels -- The implemented methodology improves the performance of adaptive weight based dense depth map algorithms -- As a result, the algorithm improves from 16.78% to 14.48% bad pixels using a classical exploratory data analysis of over 14000 existing images, while using designs of computer experiments with 31 runs yielded an even better performance by lowering bad pixels from 16.78% to 13% | eng |
dc.format | application/pdf | eng |
dc.identifier.doi | 10.1007/s10851-012-0366-7 | |
dc.identifier.issn | 0924-9907 | |
dc.identifier.uri | http://hdl.handle.net/10784/9678 | |
dc.language.iso | eng | eng |
dc.publisher | Springer Verlag | spa |
dc.relation.ispartof | Journal of Mathematical Imaging and Vision, Volume 47, Issue 1, pp 3-12 | spa |
dc.relation.uri | http://link.springer.com/article/10.1007/s10851-012-0366-7 | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights.local | Acceso abierto | spa |
dc.subject.keyword | Parameter estimation | spa |
dc.subject.keyword | Algorithms | spa |
dc.subject.keyword | Image processing | spa |
dc.subject.keyword | Experimental design | spa |
dc.subject.keyword | Parameter estimation | eng |
dc.subject.keyword | Algorithms | eng |
dc.subject.keyword | Image processing | eng |
dc.subject.keyword | Experimental design | eng |
dc.subject.keyword | Mapas de profundidad | .keywor |
dc.subject.keyword | Visión estéreo | .keywor |
dc.subject.lemb | ESTIMACIÓN DE PARÁMETROS | spa |
dc.subject.lemb | ALGORITMOS | spa |
dc.subject.lemb | PROCESAMIENTO DE IMÁGENES | spa |
dc.subject.lemb | DISEÑO EXPERIMENTAL | spa |
dc.title | Tuning of Adaptive Weight Depth Map Generation Algorithms Exploratory Data Analysis and Design of Computer Experiments (DOCE) | eng |
dc.type | info:eu-repo/semantics/article | eng |
dc.type | article | eng |
dc.type | info:eu-repo/semantics/publishedVersion | eng |
dc.type | publishedVersion | eng |
dc.type.local | Artículo | spa |
Archivos
Bloque original
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- Draft_Design_Comp_Experiments_Depth.pdf
- Tamaño:
- 1.82 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 2.5 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: