Information retrieval on documents methodology based on entropy filtering methodologies

dc.citation.journalTitleInternational Journal Of Business Intelligence And Data Miningeng
dc.contributor.authorMontoya, O.L.Q.
dc.contributor.authorVilla, L.F.
dc.contributor.authorMuñoz, S.
dc.contributor.authorArenas, A.C.R.
dc.contributor.authorBastidas, M.
dc.contributor.departmentUniversidad EAFIT. Escuela de Cienciasspa
dc.contributor.researchgroupModelado Matemáticospa
dc.date.accessioned2021-04-12T14:07:11Z
dc.date.available2021-04-12T14:07:11Z
dc.date.issued2015-01-01
dc.description.abstractInformation retrieval problem occurs when the target information is not available 'literally' into the set of documents. In problems in which the goal is to find 'hidden' information, it is important to develop hybrid methodologies or improve and design a new one. In this work the authors are dealing with identifying the most informative piece of data on a collection of documents, in order to obtain the best result on a posterior fuzzy clustering stage. The aim is to find similarities between the documents and a reference target, to establish relationships related to a non-literal feature. We propose to apply the well-known entropy term weighting scheme and then show a posterior different procedures to the right election of the interest data. This procedure brings the biggest amount of information within the smallest amount of data. Applying a specific selection procedure for a group of words, gives more information to differentiate and separate the documents after using the entropy weighting. This returns considerable results on the processing time and the right fuzzy clustering of the documents collection. Copyright © 2015 Inderscience Enterprises Ltd.eng
dc.identifierhttps://eafit.fundanetsuite.com/Publicaciones/ProdCientif/PublicacionFrw.aspx?id=2006
dc.identifier.doi10.1504/IJBIDM.2015.071327
dc.identifier.issn17438187
dc.identifier.issn17438195
dc.identifier.otherSCOPUS;2-s2.0-84940054274
dc.identifier.urihttp://hdl.handle.net/10784/27766
dc.language.isoengeng
dc.publisherInderscience Enterprises Ltd.
dc.relation.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84940054274&doi=10.1504%2fIJBIDM.2015.071327&partnerID=40&md5=38f6e07e2c28223e97eb992294aeb553
dc.rightshttps://v2.sherpa.ac.uk/id/publication/issn/1743-8187
dc.sourceInternational Journal Of Business Intelligence And Data Mining
dc.subject.keywordClusteringeng
dc.subject.keywordEntropy filteringeng
dc.subject.keywordEntropy weightingeng
dc.subject.keywordFuzzy C-meanseng
dc.subject.keywordInformation retrievaleng
dc.subject.keywordK-meanseng
dc.subject.keywordText miningeng
dc.titleInformation retrieval on documents methodology based on entropy filtering methodologieseng
dc.typearticleeng
dc.typeinfo:eu-repo/semantics/articleeng
dc.typeinfo:eu-repo/semantics/publishedVersioneng
dc.typepublishedVersioneng
dc.type.localArtículospa

Archivos

Colecciones