Hardware Design of the Discrete Wavelet Transform: an Analysis of Complexity, Accuracy and Operating Frequency
Fecha
2016-11-22
Autores
Ballesteros, Dora Maria
Renza, Diego
Pedraza, Luis Fernando
Título de la revista
ISSN de la revista
Título del volumen
Editor
Universidad EAFIT
Resumen
Descripción
The purpose of this paper is to present a comparative analysis of hardware design of the Discrete Wavelet Transform (DWT) in terms of three design goals: accuracy, hardware cost and operating frequency. Every design should take into account the following facts: method (non-polyphase, polyphase and lifting), topology (multiplier-based and multiplierless-based), structure (conventional or pipelined), and quantization format (floatingpoint, fixed-point, CSD or integer). Since DWT is widely used in several applications (e.g. compression, filtering, coding, pattern recognition among others), selection of adequate parameters plays an important role in the performance of these systems.
El propósito de este documento es presentar un análisis comparativo de esquemas hardware de la Transformada Wavelet Discreta, DWT, en términos de tres objetivos de diseño: precisión, complejidad y frecuencia de operación. Cada diseño debe considerar los siguientes aspectos: método (no polifásico, polifásico y lifting), topología (basados en multiplicadores y sin multiplicadores), estructura (convencional o pipeline) y formato de cuantización (punto flotante, punto fijo, CSD o entero). Dado que la DWT es ampliamente utilizada en diversas aplicaciones (por ejemplo en compresión, filtrado, codificación, reconocimiento de patrones, entre otras), la selección adecuada de parámetros de diseño desempeña un papel importante en el diseño de estos sistemas.
El propósito de este documento es presentar un análisis comparativo de esquemas hardware de la Transformada Wavelet Discreta, DWT, en términos de tres objetivos de diseño: precisión, complejidad y frecuencia de operación. Cada diseño debe considerar los siguientes aspectos: método (no polifásico, polifásico y lifting), topología (basados en multiplicadores y sin multiplicadores), estructura (convencional o pipeline) y formato de cuantización (punto flotante, punto fijo, CSD o entero). Dado que la DWT es ampliamente utilizada en diversas aplicaciones (por ejemplo en compresión, filtrado, codificación, reconocimiento de patrones, entre otras), la selección adecuada de parámetros de diseño desempeña un papel importante en el diseño de estos sistemas.