Improving the seismic image in reverse time migration by analysis of wavefields via continuous wavelet transform

dc.contributor.advisorQuintero Montoya, Olga Lucíaspa
dc.contributor.authorPaniagua Castrillón, Juan Guillermo
dc.coverage.spatialMedellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degreeseng
dc.creator.degreeDoctor in Engineeringspa
dc.creator.emailjpaniagu@eafit.edu.cospa
dc.date.accessioned2019-07-17T21:12:06Z
dc.date.available2019-07-17T21:12:06Z
dc.date.issued2018
dc.description.abstractDuring the last 50 years there has been a lot of effort to obtain subsurface structures on the oil and gas exploration. Some of them even if they are based on the mathematical formulation of the phenomenon, were not easily implemented due to the lack of computational power. Nevertheless, the problem is not only the algorithmic complexity but also, the uncertainty reduction of the scalar field that is obtained after the mathematical modeling and inversion procedures. Specifically, this thesis deals with the well known Reverse time migration (RTM) procedure, which is basically the two-way wave equation migration that is able to generate models with both great structural and velocity complexities, problems arise when the construction of subsurface models take into account seismic signals recorded on the surface. The data is mapped into the subsurface using the acoustic wave equation and the models obtained contain uncertainties that affect their subsequent interpretation. In order to reduce these uncertainties, we seek to improve the algorithm used in RTM before and after the generation of the final model looking for uncertainty reduction and improved scalar fields. We propose a set of strategies of extracting information from the seismic signals in order to obtain characteristics that allow a better and more refined representation of the subsurface structure model. Integral transforms are developed for this purpose. Inspired on the concept of information retrieval from data, we developed a signal procedure algorithm to determine in time-scale domain, the main features of the traveler wave in order to relate temporarily the inherent physics phenomena, locate complex structures by pointing the velocity field singularities due to the main changes on the frequency content revealed within the scalogram obtained by Gaussian wavelet family. Later on, a wavefield separation for the scalar field calculation is proposed based on the same principle and we called it Time Scale Wavefield Separation (TSWS). The space defined by Source wave propagation is decomposed on the subspaces and the analysis in time-domain time-scale of the subset of the wavefield is performed by selecting special features extracted by Wavelet Transform Modulus Maxima (WTMM) and a numerical algorithm is introduced for massive data [1]. Consequently, a Depth Scale Wavefield Separation (DSWS) is developed to the Receiver Wavefield separation by extracting the depth-domain scale-domain features of the relevant information of the reverse traveler wave [2]. Finally and taking into account the need for the proper structure definition for drilling purposes, we introduced the Laguerre Gauss Transform as final part of the Zero lag cross correlation imaging condition (ZL-CC-IC-LG) and provide a useful transformation of the final real scalar field into a complex scalar field with properties of spatial features enhancement.spa
dc.formatapplication/pdfeng
dc.identifier.ddc551.22 P192
dc.identifier.urihttp://repository.eafit.edu.co/handle/10784/13675
dc.language.isospaspa
dc.publisherUniversidad EAFITspa
dc.publisher.departmentEscuela de Ingenieríaspa
dc.publisher.placeMedellínspa
dc.publisher.programDoctorado en Ingenieríaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.localAcceso abiertospa
dc.subjectOndículasspa
dc.subject.keywordSeismic migrationspa
dc.subject.keywordImaging conditionspa
dc.subject.keywordReverse time migrationspa
dc.subject.keywordWavelet transformspa
dc.subject.lembTEORÍA ELECTROMAGNÉTICAspa
dc.subject.lembSISMOLOGÍAspa
dc.subject.lembPETROLOGÍAspa
dc.subject.lembCORTEZA TERRESTREspa
dc.titleImproving the seismic image in reverse time migration by analysis of wavefields via continuous wavelet transformspa
dc.typedoctoralThesiseng
dc.typeinfo:eu-repo/semantics/doctoralThesiseng
dc.type.hasVersionacceptedVersioneng
dc.type.localTesis Doctoralspa

Archivos

Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
JuanGuillermo_PaniaguaCastrillon_2018.pdf
Tamaño:
10.03 MB
Formato:
Adobe Portable Document Format
Descripción:
Trabajo de grado
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: