Quaternion and octonion-based finite element analysis methods for computing multiple first order derivatives
dc.citation.journalTitle | JOURNAL OF COMPUTATIONAL PHYSICS | |
dc.contributor.author | Aristizabal, Mauricio | |
dc.contributor.author | Ramirez-Tamayo, Daniel | |
dc.contributor.author | Garcia, Manuel | |
dc.contributor.author | Aguirre-Mesa, Andres | |
dc.contributor.author | Montoya, Arturo | |
dc.contributor.author | Millwater, Harry | |
dc.contributor.researchgroup | Mecánica Aplicada | spa |
dc.date.accessioned | 2021-04-16T20:10:42Z | |
dc.date.available | 2021-04-16T20:10:42Z | |
dc.date.issued | 2019-11-15 | |
dc.description.abstract | The complex Taylor series expansion method for computing accurate first order derivatives is extended in this work to quaternion, octonion and any order Cayley-Dickson algebra. The advantage of this new approach is that highly accurate multiple first order derivatives can be obtained in a single analysis. Quaternion and octonion-based finite element analysis methods were developed in order to compute up to three (quaternion) and up to seven (octonion) first order derivatives of shape, material properties, and/or loading conditions in a single analysis. The traditional finite element formulation was modified such that each degree-of-freedom was augmented with three or seven additional imaginary nodes. The quaternion and octonion-based methods were integrated within the Abaqus commercial finite element code through a user element subroutine. Numerical examples are presented for thermal conductivity and linear elasticity; however, the methodology is general. The results indicate that the quaternion and octonion-based methods provide derivatives of the same high accuracy as the complex finite element method but are significantly more efficient. A Fortran code to solve a simple seven variable quaternion example is given in the Appendix. (C) 2019 Elsevier Inc. All rights reserved. | eng |
dc.identifier | https://eafit.fundanetsuite.com/Publicaciones/ProdCientif/PublicacionFrw.aspx?id=9831 | |
dc.identifier.doi | 10.1016/j.jcp.2019.07.030 | |
dc.identifier.issn | 00219991 | |
dc.identifier.issn | 10902716 | |
dc.identifier.other | WOS;000486433900015 | |
dc.identifier.other | SCOPUS;2-s2.0-85083818253 | |
dc.identifier.uri | http://hdl.handle.net/10784/29220 | |
dc.language.iso | eng | eng |
dc.publisher | Elsevier Inc. | |
dc.publisher.department | Universidad EAFIT. Departamento de Ingeniería Mecánica | spa |
dc.relation.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083818253&doi=10.1016%2fj.jcp.2019.07.030&partnerID=40&md5=ce5ed6d0c27068cdb5b338dbd1d5c7e5 | |
dc.rights | https://v2.sherpa.ac.uk/id/publication/issn/0021-9991 | |
dc.source | JOURNAL OF COMPUTATIONAL PHYSICS | |
dc.subject.keyword | Quaternions | eng |
dc.subject.keyword | Cayley-Dickson numbers | eng |
dc.subject.keyword | Numerical differentiation | eng |
dc.subject.keyword | First order derivatives | eng |
dc.subject.keyword | Complex step | eng |
dc.title | Quaternion and octonion-based finite element analysis methods for computing multiple first order derivatives | eng |
dc.type | info:eu-repo/semantics/article | eng |
dc.type | article | eng |
dc.type | info:eu-repo/semantics/publishedVersion | eng |
dc.type | publishedVersion | eng |
dc.type.local | Artículo | spa |
Archivos
Bloque original
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- 1-s2.0-S0021999119305157-main.pdf
- Tamaño:
- 2.32 MB
- Formato:
- Adobe Portable Document Format
- Descripción: