Ellipse-based Principal Component Analysis for Self-intersecting Curve Reconstruction from Noisy Point Sets
dc.citation.epage | 226 | spa |
dc.citation.issue | 3 | spa |
dc.citation.journalTitle | The Visual Computer, Collection: Computer Science | eng |
dc.citation.journalTitle | The Visual Computer | spa |
dc.citation.spage | 211 | spa |
dc.citation.volume | 27 | spa |
dc.contributor.author | Ruíz, O. | |
dc.contributor.author | Vanegas, C. | |
dc.contributor.author | Cadavid, C. | |
dc.contributor.department | Universidad EAFIT. Departamento de Ingeniería Mecánica | spa |
dc.contributor.researchgroup | Laboratorio CAD/CAM/CAE | spa |
dc.date.accessioned | 2016-11-18T22:14:34Z | |
dc.date.available | 2016-11-18T22:14:34Z | |
dc.date.issued | 2011 | |
dc.description.abstract | Surface reconstruction from cross cuts usually requires curve reconstruction from planar noisy point samples -- The output curves must form a possibly disconnected 1manifold for the surface reconstruction to proceed -- This article describes an implemented algorithm for the reconstruction of planar curves (1manifolds) out of noisy point samples of a sel-fintersecting or nearly sel-fintersecting planar curve C -- C:[a,b]⊂R→R is self-intersecting if C(u)=C(v), u≠v, u,v∈(a,b) (C(u) is the self-intersection point) -- We consider only transversal self-intersections, i.e. those for which the tangents of the intersecting branches at the intersection point do not coincide (C′(u)≠C′(v)) -- In the presence of noise, curves which self-intersect cannot be distinguished from curves which nearly sel fintersect -- Existing algorithms for curve reconstruction out of either noisy point samples or pixel data, do not produce a (possibly disconnected) Piecewise Linear 1manifold approaching the whole point sample -- The algorithm implemented in this work uses Principal Component Analysis (PCA) with elliptic support regions near the selfintersections -- The algorithm was successful in recovering contours out of noisy slice samples of a surface, for the Hand, Pelvis and Skull data sets -- As a test for the correctness of the obtained curves in the slice levels, they were input into an algorithm of surface reconstruction, leading to a reconstructed surface which reproduces the topological and geometrical properties of the original object -- The algorithm robustly reacts not only to statistical noncorrelation at the self-intersections(nonmanifold neighborhoods) but also to occasional high noise at the nonselfintersecting (1manifold) neighborhoods | eng |
dc.format | application/pdf | eng |
dc.identifier.doi | 10.1007/s00371-010-0527-x | |
dc.identifier.issn | 1432-2315 | |
dc.identifier.uri | http://hdl.handle.net/10784/9681 | |
dc.language.iso | eng | eng |
dc.publisher | Springer Berlin Heidelberg | spa |
dc.relation.ispartof | The Visual Computer, Collection: Computer Science, Volume 27, Issue 3, pp. 211-226 | spa |
dc.relation.uri | http://dx.doi.org/10.1007/s00371-010-0527-x | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Springer-Verlag 2010 | spa |
dc.rights.local | Acceso abierto | spa |
dc.subject.keyword | Curves, plane | spa |
dc.subject.keyword | Topology | spa |
dc.subject.keyword | Manifolds (Mathematics) | spa |
dc.subject.keyword | Correlation (statistics) | spa |
dc.subject.keyword | Stochastic analysis | spa |
dc.subject.keyword | Functions, elliptic | spa |
dc.subject.keyword | Curves | eng |
dc.subject.keyword | plane | eng |
dc.subject.keyword | Topology | eng |
dc.subject.keyword | Manifolds (Mathematics) | eng |
dc.subject.keyword | Correlation (statistics) | eng |
dc.subject.keyword | Stochastic analysis | eng |
dc.subject.keyword | Functions | eng |
dc.subject.keyword | elliptic | eng |
dc.subject.keyword | Reconstrucción superficial | .keywor |
dc.subject.keyword | Nube de puntos | .keywor |
dc.subject.lemb | CURVAS PLANAS | spa |
dc.subject.lemb | COLECTORES (INGENIERÍA) | spa |
dc.subject.lemb | TOPOLOGÍA | spa |
dc.subject.lemb | VARIEDADES (MATEMÁTICAS) | spa |
dc.subject.lemb | CORRELACIÓN (ESTADÍSTICA) | spa |
dc.subject.lemb | ANÁLISIS ESTOCÁSTICO | spa |
dc.subject.lemb | FUNCIONES ELÍPTICAS | spa |
dc.title | Ellipse-based Principal Component Analysis for Self-intersecting Curve Reconstruction from Noisy Point Sets | eng |
dc.type | info:eu-repo/semantics/article | eng |
dc.type | article | eng |
dc.type | info:eu-repo/semantics/publishedVersion | eng |
dc.type | publishedVersion | eng |
dc.type.local | Artículo | spa |
Archivos
Bloque original
1 - 3 de 3
No hay miniatura disponible
- Nombre:
- ellipse-based_principal_component_analysis_abstract_springer.pdf
- Tamaño:
- 424.42 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Abstract
No hay miniatura disponible
- Nombre:
- ellipse-based_principal_component_analysis_incomplete.pdf
- Tamaño:
- 2.64 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Versión incompleta
No hay miniatura disponible
- Nombre:
- s00371-010-0527-x.pdf
- Tamaño:
- 3.49 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 2.5 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: