FE-simulations with a simplified model for open-cell porous materials: A Kelvin cell approach

dc.citation.journalTitleJournal of Computational Methods in Sciences and Engineeringeng
dc.contributor.authorMontoya-Zapata D.
dc.contributor.authorCortés C.
dc.contributor.authorRuiz-Salguero O.
dc.contributor.departmentUniversidad EAFIT. Departamento de Ingeniería Mecánicaspa
dc.contributor.researchgroupLaboratorio CAD/CAM/CAEspa
dc.date.accessioned2021-04-16T21:59:59Z
dc.date.available2021-04-16T21:59:59Z
dc.date.issued2019-01-01
dc.description.abstractIn in-silico estimation of mechanical properties of open (Kelvin) cell porous materials, the geometrical model is intractable due to the large number of finite elements generated. Such a limitation impedes the study of reasonable domains. VoXel or Boundary representations of the porous domain result in FEA data sets which do not pass the stage of mesh generation, even for very modest domains. Our method to overcome such limitations partially replaces geometrical minutiae with kinematical constraints imposed on cylindrical bars (i.e. Truss model). Our implemented method uses node position equality constraints augmented with rotation constraints at the joints. Such a method significantly reduces the computational expense of the model, allowing the study of domains of 103 Kelvin cells. The results of the tests executed show the accuracy and efficiency of the Truss model in the estimation of Young's modulus and Poisson's ratio when compared with current procedures. The method allows application for materials which depart from Kelvin Cell uniformity, since the Truss model admits general configurations. As the simulation is made possible by the Truss model, new challenges appear, such as the application to anisotropic materials and the automatic generation of the Truss model from actual foam scans (e.g. tomographies). © 2019 - IOS Press and the authors. All rights reserved.eng
dc.identifierhttps://eafit.fundanetsuite.com/Publicaciones/ProdCientif/PublicacionFrw.aspx?id=9898
dc.identifier.doi10.3233/JCM-193669
dc.identifier.issn14727978
dc.identifier.issn18758983spa
dc.identifier.otherWOS;000498820900011
dc.identifier.otherSCOPUS;2-s2.0-85075817513
dc.identifier.urihttp://hdl.handle.net/10784/29551
dc.languageeng
dc.publisherIOS Press
dc.relation.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85075817513&doi=10.3233%2fJCM-193669&partnerID=40&md5=de5a35c44b7de90a892e2e64734b362c
dc.rightshttps://v2.sherpa.ac.uk/id/publication/issn/1472-7978
dc.sourceJournal of Computational Methods in Sciences and Engineering
dc.subject.keywordCellseng
dc.subject.keywordComputational efficiencyeng
dc.subject.keywordCytologyeng
dc.subject.keywordEfficiencyeng
dc.subject.keywordElastic modulieng
dc.subject.keywordFinite element methodeng
dc.subject.keywordMesh generationeng
dc.subject.keywordPoisson ratioeng
dc.subject.keywordPorous materialseng
dc.subject.keywordTrusseseng
dc.subject.keywordAnisotropic materialeng
dc.subject.keywordBoundary representationseng
dc.subject.keywordComputational expenseeng
dc.subject.keywordGeometrical modelingeng
dc.subject.keywordIn-silicoeng
dc.subject.keywordKelvin cellseng
dc.subject.keywordKinematical constraintseng
dc.subject.keywordTruss modeleng
dc.subject.keywordBiomechanicseng
dc.titleFE-simulations with a simplified model for open-cell porous materials: A Kelvin cell approacheng
dc.typeinfo:eu-repo/semantics/articleeng
dc.typearticleeng
dc.typeinfo:eu-repo/semantics/publishedVersioneng
dc.typepublishedVersioneng
dc.type.localArtículospa

Archivos

Colecciones