Triangular mesh parameterization with trimmed surfaces
dc.citation.epage | 316 | spa |
dc.citation.issue | 4 | spa |
dc.citation.journalAbbreviatedTitle | IJIDeM | spa |
dc.citation.journalTitle | International Journal on Interactive Design and Manufacturing (IJIDeM) | eng |
dc.citation.journalTitle | International Journal on Interactive Design and Manufacturing | spa |
dc.citation.spage | 303 | spa |
dc.citation.volume | 9 | spa |
dc.contributor.author | Ruíz, Óscar E. | |
dc.contributor.author | Mejía, Daniel | |
dc.contributor.author | Cadavid, Carlos A. | |
dc.contributor.department | Universidad EAFIT. Departamento de Ingeniería Mecánica | spa |
dc.contributor.researchgroup | Laboratorio CAD/CAM/CAE | spa |
dc.date.accessioned | 2016-10-24T23:07:02Z | |
dc.date.available | 2016-10-24T23:07:02Z | |
dc.date.issued | 2015 | |
dc.description.abstract | Given a 2manifold triangular mesh \(M \subset {\mathbb {R}}^3\), with border, a parameterization of \(M\) is a FACE or trimmed surface \(F=\{S,L_0,\ldots, L_m\}\) -- \(F\) is a connected subset or region of a parametric surface \(S\), bounded by a set of LOOPs \(L_0,\ldots ,L_m\) such that each \(L_i \subset S\) is a closed 1manifold having no intersection with the other \(L_j\) LOOPs -- The parametric surface \(S\) is a statistical fit of the mesh \(M\) -- \(L_0\) is the outermost LOOP bounding \(F\) and \(L_i\) is the LOOP of the ith hole in \(F\) (if any) -- The problem of parameterizing triangular meshes is relevant for reverse engineering, tool path planning, feature detection, redesign, etc -- Stateofart mesh procedures parameterize a rectangular mesh \(M\) -- To improve such procedures, we report here the implementation of an algorithm which parameterizes meshes \(M\) presenting holes and concavities -- We synthesize a parametric surface \(S \subset {\mathbb {R}}^3\) which approximates a superset of the mesh \(M\) -- Then, we compute a set of LOOPs trimming \(S\), and therefore completing the FACE \(F=\ {S,L_0,\ldots ,L_m\}\) -- Our algorithm gives satisfactory results for \(M\) having low Gaussian curvature (i.e., \(M\) being quasi-developable or developable) -- This assumption is a reasonable one, since \(M\) is the product of manifold segmentation preprocessing -- Our algorithm computes: (1) a manifold learning mapping \(\phi : M \rightarrow U \subset {\mathbb {R}}^2\), (2) an inverse mapping \(S: W \subset {\mathbb {R}}^2 \rightarrow {\mathbb {R}}^3\), with \ (W\) being a rectangular grid containing and surpassing \(U\) -- To compute \(\phi\) we test IsoMap, Laplacian Eigenmaps and Hessian local linear embedding (best results with HLLE) -- For the back mapping (NURBS) \(S\) the crucial step is to find a control polyhedron \(P\), which is an extrapolation of \(M\) -- We calculate \(P\) by extrapolating radial basis functions that interpolate points inside \(\phi (M)\) -- We successfully test our implementation with several datasets presenting concavities, holes, and are extremely nondevelopable -- Ongoing work is being devoted to manifold segmentation which facilitates mesh parameterization | eng |
dc.format | application/pdf | eng |
dc.identifier.doi | 10.1007/s12008-015-0276-1 | |
dc.identifier.issn | 1955-2513 | |
dc.identifier.uri | http://hdl.handle.net/10784/9544 | |
dc.language.iso | eng | eng |
dc.publisher | Springer Verlag | spa |
dc.relation.ispartof | International Journal on Interactive Design and Manufacturing (IJIDeM), Volume 9, Issue 4, pp 303-316 | spa |
dc.relation.uri | http://link.springer.com/article/10.1007/s12008-015-0276-1 | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.rights.local | Acceso cerrado | spa |
dc.subject.keyword | Manifolds (Mathematics) | spa |
dc.subject.keyword | Gaussian quadrature formulas | spa |
dc.subject.keyword | Algorithms | spa |
dc.subject.keyword | Numerical grid generation (Numerical analysis) | spa |
dc.subject.keyword | Manifolds (Mathematics) | eng |
dc.subject.keyword | Gaussian quadrature formulas | eng |
dc.subject.keyword | Algorithms | eng |
dc.subject.keyword | Numerical grid generation (Numerical analysis) | eng |
dc.subject.keyword | Superficies NURBS | .keywor |
dc.subject.keyword | Superficies B-Splines Racionales no Uniformes (NURBS) | .keywor |
dc.subject.keyword | Sistemas CAD/CAM | .keywor |
dc.subject.keyword | Ingeniería inversa | .keywor |
dc.subject.lemb | VARIEDADES (MATEMÁTICAS) | spa |
dc.subject.lemb | CUADRATURA DE GAUSS | spa |
dc.subject.lemb | ALGORITMOS | spa |
dc.subject.lemb | GENERACIÓN NUMÉRICA DE MALLAS (ANÁLISIS NUMÉRICO) | spa |
dc.title | Triangular mesh parameterization with trimmed surfaces | eng |
dc.type | info:eu-repo/semantics/article | eng |
dc.type | article | eng |
dc.type | info:eu-repo/semantics/publishedVersion | eng |
dc.type | publishedVersion | eng |
dc.type.local | Artículo | spa |
Archivos
Bloque original
1 - 3 de 3
No hay miniatura disponible
- Nombre:
- Triangular-mesh.html
- Tamaño:
- 299 B
- Formato:
- Hypertext Markup Language
- Descripción:
No hay miniatura disponible
- Nombre:
- Triangular-mesh.pdf
- Tamaño:
- 207.85 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Web Page Print
No hay miniatura disponible
- Nombre:
- s12008-015-0276-1.pdf
- Tamaño:
- 5.38 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 2.5 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: