Robust CT to US 3D-3D Registration by Using Principal Component Analysis and Kalman Filtering
dc.contributor.author | Echeverría, Rebeca | |
dc.contributor.author | Cortes, Camilo | |
dc.contributor.author | Bertelsen, Alvaro | |
dc.contributor.author | Macia, Ivan | |
dc.contributor.author | Ruíz, Óscar E. | |
dc.contributor.author | Flórez, Julián | |
dc.contributor.department | Universidad EAFIT. Departamento de Ingeniería Mecánica | spa |
dc.contributor.researchgroup | Laboratorio CAD/CAM/CAE | spa |
dc.date.accessioned | 2016-11-30T15:56:58Z | |
dc.date.available | 2016-11-30T15:56:58Z | |
dc.date.issued | 2016-07 | |
dc.description.abstract | Algorithms based on the unscented Kalman filter (UKF) have been proposed as an alternative for registration of point clouds obtained from vertebral ultrasound (US) and computerised tomography (CT) scans, effectively handling the US limited depth and low signaltonoise ratio -- Previously proposed methods are accurate, but their convergence rate is considerably reduced with initial misalignments of the datasets greater than or 30 mm -- We propose a novel method which increases robustness by adding a coarse alignment of the datasets’ principal components and batchbased point inclusions for the UKF -- Experiments with simulated scans with full coverage of a single vertebra show the method’s capability and accuracy to correct misalignments as large as and 90 mm -- Furthermore, the method registers datasets with varying degrees of missing data and datasets with outlier points coming from adjacent vertebrae | eng |
dc.description.note | pp.52 - 63 | spa |
dc.format | application/pdf | eng |
dc.identifier.citation | @Inbook{Echeverri2016, author={Echeverria, Rebeca and Cortes, Camilo and Bertelsen, Alvaro and Macia, Ivan and Ruiz, Oscar E. and Florez, Julian}, editor={Vrtovec, Tomaz and Yao, Jianhua and Glocker, Ben and Klinder, Tobias and Frangi, Alejandro and Zheng, Guoyan and Li, Shuo}, title={Robust CT to US 3D-3D Registration by Using Principal Component Analysis and Kalman Filtering}, bookTitle={Computational Methods and Clinical Applications for Spine Imaging: Third International Workshop and Challenge, CSI 2015, Held in Conjunction with MICCAI 2015, Munich, Germany, October 5, 2015, Proceedings}, year={2016}, publisher={Springer International Publishing}, address={Cham}, pages={52--63}, isbn={978-3-319-41827-8}, doi={10.1007/978-3-319-41827-8_5}, url={http://dx.doi.org/10.1007/978-3-319-41827-8_5} | spa |
dc.identifier.doi | 10.1007/978-3-319-41827-8_5 | |
dc.identifier.uri | http://hdl.handle.net/10784/9793 | |
dc.language.iso | eng | spa |
dc.relation.ispartof | Computational Methods and Clinical Applications for Spine Imaging | spa |
dc.relation.isversionof | https://doi.org/10.1007/978-3-319-41827-8_5 | spa |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | eng |
dc.rights.local | Acceso cerrado | spa |
dc.subject.keyword | Tomography | eng |
dc.subject.keyword | Kalman filtering | eng |
dc.subject.keyword | Ultrasonics in medicine | eng |
dc.subject.keyword | Mathematical models | eng |
dc.subject.keyword | Differential equations | eng |
dc.subject.keyword | Image processing | eng |
dc.subject.keyword | Nube de puntos | spa |
dc.subject.keyword | Imagen médica multimodal | spa |
dc.subject.keyword | Métodos computacionales | spa |
dc.subject.lemb | TOMOGRAFÍA | spa |
dc.subject.lemb | FILTRACIÓN KALMAN | spa |
dc.subject.lemb | ULTRASONIDO EN MEDICINA | spa |
dc.subject.lemb | MODELOS MATEMÁTICOS | spa |
dc.subject.lemb | ECUACIONES DIFERENCIALES | spa |
dc.subject.lemb | PROCESAMIENTO DE IMÁGENES | spa |
dc.title | Robust CT to US 3D-3D Registration by Using Principal Component Analysis and Kalman Filtering | eng |
dc.type | info:eu-repo/semantics/bookPart | eng |
dc.type | bookPart | eng |
dc.type | info:eu-repo/semantics/publishedVersion | eng |
dc.type | publishedVersion | eng |
dc.type.hasVersion | Obra publicada | spa |
dc.type.local | Capítulo o parte de un libro | spa |
Archivos
Bloque original
1 - 2 de 2
No hay miniatura disponible
- Nombre:
- Robust CT to US 3D-3D Registration by Using Principal Component Analysis and Kalman Filtering - Springer.pdf
- Tamaño:
- 271.91 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
No hay miniatura disponible
- Nombre:
- 2016_ChBook_Robust_CT_SpringerSite.pdf
- Tamaño:
- 426.43 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 2.5 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: