FocusNET : an autofocusing learning‐based model for digital lensless holographic microscopy
dc.contributor.advisor | Trujillo Anaya, Carlos Alejandro | spa |
dc.contributor.advisor | Lopera Acosta, María Josef | spa |
dc.contributor.author | Montoya Zuluaga, Manuel | |
dc.coverage.spatial | Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees | eng |
dc.creator.degree | Magíster en Ciencias de Datos y Analítica | spa |
dc.creator.email | mmonto95@eafit.edu.co | spa |
dc.date.accessioned | 2023-08-15T16:42:43Z | |
dc.date.available | 2023-08-15T16:42:43Z | |
dc.date.issued | 2023 | |
dc.description.abstract | This paper reports on a convolutional neural network (CNN) – based regression model, called FocusNET, to predict the accurate reconstruction distance of raw holograms in Digital Lensless Holographic Microscopy (DLHM). This proposal provides a physical-mathematical formulation to extend its use to different DLHM setups than the optical and geometrical conditions utilized for recording the training dataset; this unique feature is tested by applying the proposal to holograms of diverse samples recorded with different DLHM setups. Additionally, a comparison between FocusNET and conventional autofocusing methods in terms of processing times and accuracy is provided. Although the proposed method predicts reconstruction distances with approximately 54 µm standard deviation, accurate information about the samples in the validation dataset is still retrieved. When compared to a method that utilizes a stack of reconstructions to find the best focal plane, FocusNET performs 600 times faster, as no hologram reconstruction is needed. When implemented in batches, the network can achieve up to a 1200-fold reduction in processing time, depending on the number of holograms to be processed. The training and validation datasets, and the code implementations, are hosted on a public GitHub repository that can be freely accessed. | spa |
dc.identifier.ddc | 621.36 M798 | |
dc.identifier.uri | http://hdl.handle.net/10784/32788 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad EAFIT | spa |
dc.publisher.department | Escuela de Administración | spa |
dc.publisher.place | Medellín | spa |
dc.publisher.program | Maestría en Ciencias de los Datos y Analítica | spa |
dc.relation.uri | https://doi.org/10.1016/j.optlaseng.2023.107546 | spa |
dc.rights | Todos los derechos reservados | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.local | Acceso abierto | spa |
dc.subject | Microscopía sin lentes | spa |
dc.subject | Autoenfoque | spa |
dc.subject | Aprendizaje profundo | spa |
dc.subject | Red neuronal convolucional | spa |
dc.subject | Holografía digital de Gabor | spa |
dc.subject.keyword | Lensfree microscopy | spa |
dc.subject.keyword | Autofocusing | spa |
dc.subject.keyword | Deep Learning | spa |
dc.subject.keyword | Convolutional neural network | spa |
dc.subject.keyword | Digital Gabor Holography | spa |
dc.subject.lemb | APRENDIZAJE AUTOMÁTICO (INTELIGENCIA ARTIFICIAL) | spa |
dc.subject.lemb | HOLOGRAFÍA | spa |
dc.subject.lemb | MICROSCOPÍA | spa |
dc.subject.lemb | ÓPTICA | spa |
dc.title | FocusNET : an autofocusing learning‐based model for digital lensless holographic microscopy | spa |
dc.type | masterThesis | eng |
dc.type | info:eu-repo/semantics/masterThesis | eng |
dc.type.hasVersion | acceptedVersion | eng |
dc.type.local | Tesis de Maestría | spa |
dc.type.spa | Artículo | spa |
Archivos
Bloque original
1 - 3 de 3
No hay miniatura disponible
- Nombre:
- ManuelMontoya_2023.pdf
- Tamaño:
- 2.78 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Trabajo de grado
No hay miniatura disponible
- Nombre:
- formulario_autorizacion_publicacion_obras.pdf
- Tamaño:
- 595.3 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Formulario de autorización de publicación de obras
No hay miniatura disponible
- Nombre:
- carta_aprobacion_trabajo_grado_eafit.pdf
- Tamaño:
- 91.01 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Carta de aprobación de tesis de grado
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 2.5 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: