Design of computer experiments applied to modeling of compliant mechanisms for real-time control

dc.citation.journalTitleENGINEERING WITH COMPUTERSeng
dc.contributor.authorAcosta, Diego A.
dc.contributor.authorRestrepo, David
dc.contributor.authorDurango, Sebastian
dc.contributor.authorRuiz, Oscar E.
dc.contributor.departmentUniversidad EAFIT. Departamento de Ingeniería Mecánicaspa
dc.contributor.researchgroupLaboratorio CAD/CAM/CAEspa
dc.date.accessioned2021-04-16T21:59:55Z
dc.date.available2021-04-16T21:59:55Z
dc.date.issued2013-07-01
dc.description.abstractThis article discusses the use of design of computer experiments (DOCE) (i.e., experiments run with a computer model to find how a set of inputs affects a set of outputs) to obtain a force-displacement meta-model (i.e., a mathematical equation that summarizes and aids in analyzing the input-output data of a DOCE) of compliant mechanisms (CMs). The procedure discussed produces a force-displacement meta-model, or closed analytic vector function, that aims to control CMs in real-time. In our work, the factorial and space-filling DOCE meta-model of CMs is supported by finite element analysis (FEA). The protocol discussed is used to model the HexFlex mechanism functioning under quasi-static conditions. The HexFlex is a parallel CM for nano-manipulation that allows six degrees of freedom (x, y, z, ? x, ? y, ? z ) of its moving platform. In the multi-linear model fit of the HexFlex, the products or interactions proved to be negligible, yielding a linear model (i.e., linear in the inputs) for the operating range. The accuracy of the meta-model was calculated by conducting a set of computer experiments with random uniform distribution of the input forces. Three error criteria were recorded comparing the meta-model prediction with respect to the results of the FEA experiments by determining: (1) maximum of the absolute value of the error, (2) relative error, and (3) root mean square error. The maximum errors of our model are lower than high-precision manufacturing tolerances and are also lower than those reported by other researchers who have tried to fit meta-models to the HexFlex mechanism. © 2012 Springer-Verlag London Limited.eng
dc.identifierhttps://eafit.fundanetsuite.com/Publicaciones/ProdCientif/PublicacionFrw.aspx?id=1304
dc.identifier.doi10.1007/s00366-012-0268-8
dc.identifier.issn1770667
dc.identifier.issn14355663spa
dc.identifier.otherWOS;000320456400007
dc.identifier.otherSCOPUS;2-s2.0-84879322908
dc.identifier.urihttp://hdl.handle.net/10784/29516
dc.languageeng
dc.publisherSPRINGER
dc.relation.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84879322908&doi=10.1007%2fs00366-012-0268-8&partnerID=40&md5=328f659cbdb607c12be1e78f5fadb987
dc.rightshttps://v2.sherpa.ac.uk/id/publication/issn/0177-0667
dc.sourceENGINEERING WITH COMPUTERS
dc.subject.keywordDesign of computer experimentseng
dc.subject.keywordHigh-precision manufacturingeng
dc.subject.keywordMetamodelingeng
dc.subject.keywordPlackett-Burman designseng
dc.subject.keywordQuasi-static conditionseng
dc.subject.keywordRoot mean square errorseng
dc.subject.keywordSix degrees of freedomeng
dc.subject.keywordUniform designeng
dc.subject.keywordCompliant mechanismseng
dc.subject.keywordDesign of experimentseng
dc.subject.keywordExperimentseng
dc.subject.keywordFinite element methodeng
dc.subject.keywordKnowledge managementeng
dc.subject.keywordMean square erroreng
dc.subject.keywordMechanical engineeringeng
dc.subject.keywordMechanismseng
dc.subject.keywordReal time controleng
dc.subject.keywordMathematical modelseng
dc.titleDesign of computer experiments applied to modeling of compliant mechanisms for real-time controleng
dc.typeinfo:eu-repo/semantics/articleeng
dc.typearticleeng
dc.typeinfo:eu-repo/semantics/publishedVersioneng
dc.typepublishedVersioneng
dc.type.localArtículospa

Archivos

Colecciones