A Survey on Some Algebraic Characterizations of Hilbert’s Nullstellensatz for Non-commutative Rings of Polynomial Type
Fecha
2020-06-19
Autores
Reyes, Armando
Hernández-Mogollón, Jason
Título de la revista
ISSN de la revista
Título del volumen
Editor
Universidad EAFIT
Resumen
In this paper we present a survey of some algebraic characterizations of Hilbert’s Nullstellensatz for non-commutative rings of polynomial type. Using several results established in the literature, we obtain a version of this theorem for the skew Poincaré-Birkhoff-Witt extensions. Once this is done, we illustrate the Nullstellensatz with examples appearing in noncommutative ring theory and non-commutative algebraic geometry.
En este artículo presentamos un estudio sobre algunas caracterizaciones algebraicas del teorema de Nullstellensatz de Hilbert para anillos no conmutativos de tipo polinomial. Utilizando varios resultados establecidos en la literatura, obtuvimos una versión de este teorema para las extensiones de Poincaré-Birkhoff-Witt. Una vez hecho esto, ilustramos el Nullstellensatz con ejemplos que aparecen en la teoría de los anillos no conmutativa y en la geometría algebraica no conmutativa.
En este artículo presentamos un estudio sobre algunas caracterizaciones algebraicas del teorema de Nullstellensatz de Hilbert para anillos no conmutativos de tipo polinomial. Utilizando varios resultados establecidos en la literatura, obtuvimos una versión de este teorema para las extensiones de Poincaré-Birkhoff-Witt. Una vez hecho esto, ilustramos el Nullstellensatz con ejemplos que aparecen en la teoría de los anillos no conmutativa y en la geometría algebraica no conmutativa.