Geometry simplification of open-cell porous materials for elastic deformation FEA

dc.citation.journalTitleENGINEERING WITH COMPUTERSeng
dc.contributor.authorCortés C.
dc.contributor.authorOsorno M.
dc.contributor.authorUribe D.
dc.contributor.authorSteeb H.
dc.contributor.authorRuiz-Salguero O.
dc.contributor.authorBarandiarán I.
dc.contributor.authorFlórez J.
dc.contributor.departmentUniversidad EAFIT. Departamento de Ingeniería Mecánicaspa
dc.contributor.researchgroupLaboratorio CAD/CAM/CAEspa
dc.date.accessioned2021-04-16T21:59:58Z
dc.date.available2021-04-16T21:59:58Z
dc.date.issued2019-01-01
dc.description.abstractEstimation of mechanical properties of porous materials is central for their medical and industrial application. However, the massive size of accurate boundary representations (B-Rep) of the foams makes the numerical estimations intractable. Even for small domain sizes, the mesh generation for finite element analysis (FEA) may not terminate. Current efforts for simulating porous materials use statistical predictions of the material structure. The simulated and actual materials present different geometry and topology, with consequences on the simulation results. To overcome these limitations, this manuscript presents a method, which (1) synthesizes an accurate truss abstraction from the raw geometry data, (2) executes efficient FEA simulations, and (3) processes nodal displacements to estimate apparent mechanical moduli of the porous material. The method addresses materials whose ligaments have circular cross-sections. The iso-surface present in the Computer Tomography (CT) scan of the porous material is used to synthesize a truss graph whose edges are truncated cones. Then, optimization and simplification methods are applied to produce a topologically and geometrically correct truss representation for the foam domain. Comparative FEA load simulations are conducted between the full B-Rep and truss representations of the material. The truss model proves to be significantly more efficient for FEA, departing from the Full B-Rep FEA by a maximum of 16% in the estimation of equivalent mechanical moduli. Geometric assessments such as porosity and Hausdorff distance confirm that the truss abstraction is a cost-effective one. Ongoing efforts concentrate on point set geometric algorithms for enforcement of standardized material testing. © 2018 Springer-Verlag London Ltd., part of Springer Natureeng
dc.identifierhttps://eafit.fundanetsuite.com/Publicaciones/ProdCientif/PublicacionFrw.aspx?id=7974
dc.identifier.doi10.1007/s00366-018-0597-3
dc.identifier.issn1770667
dc.identifier.issn14355663spa
dc.identifier.otherWOS;000456860600019
dc.identifier.otherSCOPUS;2-s2.0-85042929282
dc.identifier.urihttp://hdl.handle.net/10784/29542
dc.languageeng
dc.publisherSPRINGER
dc.relation.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85042929282&doi=10.1007%2fs00366-018-0597-3&partnerID=40&md5=c6fb0e892ebaf09fd9f4d3c5ec0bda95
dc.rightshttps://v2.sherpa.ac.uk/id/publication/issn/0177-0667
dc.sourceENGINEERING WITH COMPUTERS
dc.subject.keywordAbstractingeng
dc.subject.keywordBiomechanicseng
dc.subject.keywordComputerized tomographyeng
dc.subject.keywordCost effectivenesseng
dc.subject.keywordEdge computingeng
dc.subject.keywordGeometryeng
dc.subject.keywordMesh generationeng
dc.subject.keywordPorous materialseng
dc.subject.keywordTopologyeng
dc.subject.keywordTrusseseng
dc.subject.keywordBoundary representationseng
dc.subject.keywordCircular cross-sectionseng
dc.subject.keywordElastic propertieseng
dc.subject.keywordGeometric assessmentseng
dc.subject.keywordOpen-cell foamseng
dc.subject.keywordSimplification methodeng
dc.subject.keywordStandardized materialseng
dc.subject.keywordStatistical predictioneng
dc.subject.keywordFinite element methodeng
dc.titleGeometry simplification of open-cell porous materials for elastic deformation FEAeng
dc.typeinfo:eu-repo/semantics/articleeng
dc.typearticleeng
dc.typeinfo:eu-repo/semantics/publishedVersioneng
dc.typepublishedVersioneng
dc.type.localArtículospa

Archivos

Colecciones