Towards an improved ASUM-DM process methodology for cross-disciplinary multi-organization big data & analytics projects
dc.contributor.author | Angée, S. | |
dc.contributor.author | Lozano-Argel, S.I. | |
dc.contributor.author | Montoya-Munera, E.N. | |
dc.contributor.author | Ospina-Arango, J.-D. | |
dc.contributor.author | Tabares-Betancur, M.S. | |
dc.contributor.department | Universidad EAFIT. Departamento de Ingeniería de Sistemas | spa |
dc.contributor.researchgroup | I+D+I en Tecnologías de la Información y las Comunicaciones | spa |
dc.date.accessioned | 2021-04-12T21:07:08Z | |
dc.date.available | 2021-04-12T21:07:08Z | |
dc.date.issued | 2018-01-01 | |
dc.description.abstract | The development of big data & analytics projects with the participation of several corporate divisions and research groups within and among organizations is a non-trivial problem and requires well-defined roles and processes. Since there is no accepted standard for the implementation of big data & analytics projects, project managers have to either adapt an existing data mining process methodology or create a new one. This work presents a use case for a big data & analytics project for the banking sector. The authors found out that an adaptation of ASUM-DM, a refined CRISP-DM, with the addition of big data analysis, application prototyping, and prototype evaluation, plus a strong project management work with an emphasis in communications proved the best solution to develop a cross-disciplinary, multi-organization, geographically-distributed big data & analytics project. © 2018, Springer Nature Switzerland AG. | eng |
dc.identifier | https://eafit.fundanetsuite.com/Publicaciones/ProdCientif/PublicacionFrw.aspx?id=8223 | |
dc.identifier.doi | 10.1007/978-3-319-95204-8_51 | |
dc.identifier.issn | 18650929 | |
dc.identifier.issn | 18650937 | |
dc.identifier.other | WOS;000558244200050 | |
dc.identifier.other | SCOPUS;2-s2.0-85051970837 | |
dc.identifier.uri | http://hdl.handle.net/10784/28767 | |
dc.language.iso | eng | |
dc.publisher | Springer Verlag | |
dc.relation.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85051970837&doi=10.1007%2f978-3-319-95204-8_51&partnerID=40&md5=c34d0655327792e6c45a9c8698c1a5f3 | |
dc.rights | https://v2.sherpa.ac.uk/id/publication/issn/1865-0929 | |
dc.source | Communications in Computer and Information Science | |
dc.subject.keyword | Data | eng |
dc.subject.keyword | mining | eng |
dc.subject.keyword | Knowledge | eng |
dc.subject.keyword | management | eng |
dc.subject.keyword | Project | eng |
dc.subject.keyword | management | eng |
dc.subject.keyword | Software | eng |
dc.subject.keyword | prototyping | eng |
dc.subject.keyword | Analytics | eng |
dc.subject.keyword | ASUM-DM | eng |
dc.subject.keyword | Banking | eng |
dc.subject.keyword | sectors | eng |
dc.subject.keyword | CRISP-DM | eng |
dc.subject.keyword | Cross-disciplinary | eng |
dc.subject.keyword | Data | eng |
dc.subject.keyword | mining | eng |
dc.subject.keyword | process | eng |
dc.subject.keyword | Non | eng |
dc.subject.keyword | trivial | eng |
dc.subject.keyword | problems | eng |
dc.subject.keyword | Project | eng |
dc.subject.keyword | managers | eng |
dc.subject.keyword | Big | eng |
dc.subject.keyword | data | eng |
dc.title | Towards an improved ASUM-DM process methodology for cross-disciplinary multi-organization big data & analytics projects | eng |
dc.type | info:eu-repo/semantics/conferencePaper | eng |
dc.type | conferencePaper | eng |
dc.type | info:eu-repo/semantics/publishedVersion | eng |
dc.type | publishedVersion | eng |
dc.type.local | Documento de conferencia | spa |