The productivity of top researchers: A semi-nonparametric approach

dc.contributor.authorCortés, Lina M.
dc.contributor.authorPerote, Javier
dc.contributor.authorMora-Valencia, Andrés
dc.contributor.eafitauthorlcortesd@eafit.edu.co
dc.coverage.spatialMedellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degreeseng
dc.date.accessioned2016-03-18T20:20:32Z
dc.date.available2016-03-18T20:20:32Z
dc.date.issued2016-03-02
dc.description.abstractResearch productivity distributions exhibit heavy tails because it is common for a few researchers to accumulate the majority of the top publications and their corresponding citations. Measurements of this productivity are very sensitive to the field being analyzed and the distribution used. In particular, distributions such as the lognormal distribution seem to systematically underestimate the productivity of the top researchers. In this article, we propose the use of a (log)semi-nonparametric distribution (log-SNP) that nests the lognormal and captures the heavy tail of the productivity distribution through the introduction of new parameters linked to high-order moments. To compare the results, we use research performance data on 140,971 researchers who have produced 253,634 publications in 18 fields of knowledge (O’Boyle and Aguinis, 2012) and show how the log-SNP distribution provides more accurate measures of the performance of the top researchers in their respective fields of knowledge.eng
dc.identifier.jelC14
dc.identifier.jelC44
dc.identifier.jelC53
dc.identifier.urihttp://hdl.handle.net/10784/8181
dc.language.isoengeng
dc.publisherUniversidad EAFITspa
dc.publisher.departmentEscuela de Economía y Finanzasspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesseng
dc.rights.localAcceso abiertospa
dc.subject.keywordResearch evaluationspa
dc.subject.keywordResearch productivityspa
dc.subject.keywordHeavy tail distributionsspa
dc.subject.keywordSemi- nonparametric modelingspa
dc.titleThe productivity of top researchers: A semi-nonparametric approacheng
dc.typeworkingPapereng
dc.typeinfo:eu-repo/semantics/workingPapereng
dc.type.hasVersiondrafteng
dc.type.localDocumento de trabajo de investigaciónspa

Archivos

Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
2016_05_Lina_M_Cortes.pdf
Tamaño:
715.91 KB
Formato:
Adobe Portable Document Format
Descripción:
Documento de trabajo de investigación
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.5 KB
Formato:
Item-specific license agreed upon to submission
Descripción: