SH Wave Number Green’s Function for a Layered, Elastic Half-Space. Part I: Theory and Dynamic Canyon Response by the Discrete Wave Number Boundary Element Method

dc.citation.journalTitlePURE AND APPLIED GEOPHYSICS
dc.contributor.authorRestrepo, Doriam
dc.contributor.authorDavid Gomez, Juan
dc.contributor.authorDiego Jaramillo, Juan
dc.contributor.researchgroupMecánica Aplicadaspa
dc.date.accessioned2021-04-16T20:10:36Z
dc.date.available2021-04-16T20:10:36Z
dc.date.issued2014-09-01
dc.description.abstractWe present a closed-form frequency-wave number (? – k) Green’s function for a layered, elastic half-space under SH wave propagation. It is shown that for every (? – k) pair, the fundamental solution exhibits two distinctive features: (1) the original layered system can be reduced to a system composed by the uppermost superficial layer over an equivalent half-space; (2) the fundamental solution can be partitioned into three different fundamental solutions, each one carrying out a different physical interpretation, i.e., an equivalent half-space, source image impact, and dispersive wave effect, respectively. Such an interpretation allows the proper use of analytical and numerical integration schemes, and ensures the correct assessment of Cauchy principal value integrals. Our method is based upon a stiffness-matrix scheme, and as a first approach we assume that observation points and the impulsive SH line-source are spatially located within the uppermost superficial layer. We use a discrete wave number boundary element strategy to test the benefits of our fundamental solution. We benchmark our results against reported solutions for an infinitely long circular canyon subjected to oblique incident SH waves within a homogeneous half-space. Our results show an almost exact agreement with previous studies. We further shed light on the impact of horizontal strata by examining the dynamic response of the circular canyon to oblique incident SH waves under different layered half-space configurations and incident angles. Our results show that modifications in the layering structure manifest by larger peak ground responses, and stronger spatial variability due to interactions of the canyon geometry with trapped Love waves in combination with impedance contrast effects. © 2014, Springer Basel.eng
dc.identifierhttps://eafit.fundanetsuite.com/Publicaciones/ProdCientif/PublicacionFrw.aspx?id=1253
dc.identifier.doi10.1007/s00024-014-0780-4
dc.identifier.issn14209136
dc.identifier.issn16713664spa
dc.identifier.otherWOS;000341927200007
dc.identifier.otherSCOPUS;2-s2.0-84908120285
dc.identifier.urihttp://hdl.handle.net/10784/29164
dc.language.isoengeng
dc.publisherSPRINGER BASEL AG
dc.publisher.departmentUniversidad EAFIT. Departamento de Ingeniería Mecánicaspa
dc.relation.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84908120285&doi=10.1007%2fs00024-014-0780-4&partnerID=40&md5=e7732c4e7b4136fffcf15942baa70644
dc.rightshttps://v2.sherpa.ac.uk/id/publication/issn/0033-4553
dc.sourcePURE AND APPLIED GEOPHYSICS
dc.subject.keywordBoundary elementseng
dc.subject.keywordElastic half spaceeng
dc.subject.keywordLayered half spaceseng
dc.subject.keywordS functioneng
dc.subject.keywordSH waveeng
dc.subject.keywordWave numberseng
dc.subject.keywordbenchmarkingeng
dc.subject.keywordboundary element methodeng
dc.subject.keywordcanyoneng
dc.subject.keyworddata interpretationeng
dc.subject.keyworddynamic responseeng
dc.subject.keywordgeometryeng
dc.subject.keywordGreen functioneng
dc.subject.keywordhalf spaceeng
dc.subject.keywordlayered mediumeng
dc.subject.keywordLove waveeng
dc.subject.keywordSH-waveeng
dc.subject.keywordwave propagationeng
dc.titleSH Wave Number Green’s Function for a Layered, Elastic Half-Space. Part I: Theory and Dynamic Canyon Response by the Discrete Wave Number Boundary Element Methodeng
dc.typeinfo:eu-repo/semantics/articleeng
dc.typearticleeng
dc.typeinfo:eu-repo/semantics/publishedVersioneng
dc.typepublishedVersioneng
dc.type.localArtículospa

Archivos

Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
s00024-014-0780-4.pdf
Tamaño:
2.49 MB
Formato:
Adobe Portable Document Format
Descripción:

Colecciones