Volumetric non-local-means based speckle reduction for optical coherence tomography

Fecha

2018-07-01

Autores

Cuartas-Vélez, C.
Restrepo, R.
Bouma, B.E.
Uribe-Patarroyo, N.

Título de la revista

ISSN de la revista

Título del volumen

Editor

OSA - The Optical Society

Resumen

We present a novel tomographic non-local-means based despeckling technique, TNode, for optical coherence tomography. TNode is built upon a weighting similarity criterion derived for speckle in a three-dimensional similarity window. We present an implementation using a two-dimensional search window, enabling the despeckling of volumes in the presence of motion artifacts, and an implementation using a three-dimensional window with improved performance in motion-free volumes. We show that our technique provides effective speckle reduction, comparable with B-scan compounding or out-of-plane averaging, while preserving isotropic resolution, even to the level of speckle-sized structures. We demonstrate its superior despeckling performance in a phantom data set, and in an ophthalmic data set we show that small, speckle-sized retinal vessels are clearly preserved in intensity images en-face and in two orthogonal, cross-sectional views. TNode does not rely on dictionaries or segmentation and therefore can readily be applied to arbitrary optical coherence tomography volumes. We show that despeckled esophageal volumes exhibit improved image quality and detail, even in the presence of significant motion artifacts. © 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement.

Descripción

Palabras clave

Citación

Colecciones