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Abstract: We present a novel tomographic non-local-means based despeckling technique,
TNode, for optical coherence tomography. TNode is built upon a weighting similarity criterion
derived for speckle in a three-dimensional similarity window. We present an implementation
using a two-dimensional search window, enabling the despeckling of volumes in the presence
of motion artifacts, and an implementation using a three-dimensional window with improved
performance in motion-free volumes. We show that our technique provides effective speckle
reduction, comparable with B-scan compounding or out-of-plane averaging, while preserving
isotropic resolution, even to the level of speckle-sized structures. We demonstrate its superior
despeckling performance in a phantom data set, and in an ophthalmic data set we show that
small, speckle-sized retinal vessels are clearly preserved in intensity images en-face and in two
orthogonal, cross-sectional views. TNode does not rely on dictionaries or segmentation and
therefore can readily be applied to arbitrary optical coherence tomography volumes. We show that
despeckled esophageal volumes exhibit improved image quality and detail, even in the presence
of significant motion artifacts.
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
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1. Introduction

Optical coherence tomography (OCT) is an imaging technique which produces high-resolution
cross-sectional images of biological tissues [1]. Due to the coherent nature of OCT, its tomographic
images present speckle [2–4] which degrades image quality and hinders visual interpretation.
Consequently, the reduction of speckle has been a perennial topic of interest in the OCT
community [5–27]. Indeed, the suppression of speckle and speckle-like noise while preserving the
visibility of fine-scale structure is an active area of research for most coherent imaging techniques,
including magnetic resonance imaging [28–30], synthetic aperture radar (SAR) [31–33] and
ultrasound imaging [34, 35]. The main goal of speckle reduction techniques is to increase
image quality, thereby facilitating visual interpretation and, in the case of medical applications,
improving diagnostic utility.
Speckle reduction in coherent imaging is typically achieved by performing an incoherent

averaging of uncorrelated speckle realizations of the imaged object [5–9]. Incoherent averaging
reduces the speckle contrast, and as the number of uncorrelated realizations increases, the
averaged result approaches the equivalent incoherent image [36]. However, for static objects
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where the scatterer distribution does not change in time, the incoherent addition of uncorrelated
speckle realizations carries an implicit resolution loss with respect to the original information
content. The search for improved speckle reduction techniques relies on obtaining uncorrelated
speckle patterns reducing the impact on the spatial resolution of the image.

Speckle-reduction techniques for OCT can be classified in two general families: hardware-based
and post-processing algorithms. Hardware-based approaches modify the acquisition system to
produce uncorrelated speckle patterns within or between B-scans. Examples include angular [5,6],
spatial [7, 8] and frequency compounding [9]. It is easy to see the loss of information content in
each implementation: in angular compounding, the raw data contains information corresponding
to a higher numerical aperture (NA) than the compounded image — although to create the high-
NA image coherent addition of multiple angles is required; in spatial compounding, neighboring
sample locations are merged into a single pixel; in frequency compounding, the raw data contains
information corresponding to a higher axial resolution. Moreover, the addition of components in
commercial OCT systems and special acquisition schemes required in hardware-based techniques
is not a straightforward task [8]. In Ref. [7], strain induced on the sample changes the arrangement
of the scatterers inside each resolution volume. This spatial approach can, in principle, preserve
the spatial resolution while decreasing the speckle contrast. However, the number of uncorrelated
speckle patterns that can be realistically created without incurring resolution loss is small [7].

Perhaps the most common embodiment of speckle reduction in OCT relies on the acquisition
of repeated B-scans comprising the same sample structure but uncorrelated speckle. This is a
special case of spatial compounding and has long been used in commercial ophthalmic OCT
systems with success. However, if two B-scans are acquired at exactly the same spatial location,
the speckle patterns must necessarily be highly correlated and compounding does not reduce
the speckle contrast [10,11]. When compounding B-scans, speckle reduction comes from two
sources: in perfused tissue, like the choroid, speckle decorrelation arises mainly from moving
red blood cells. In avascular tissue, speckle decorrelation is due to small lateral offsets given by
small errors in the eye tracking system.

Available speckle suppression post-processing algorithms for OCT can be classified in general
in three families: transformation based, sparse representations and spatial domain. Although
many advanced post-processing algorithms have been developed and applied to OCT, it is
surprising that most approaches focus on improving individual B-scans, without regard to the
volumetric data structure [12–15]. Frame-to-frame analysis after filtering is generally hindered
and further volumetric processing is difficult. Additionally, most of these algorithms treat speckle
as additive Gaussian noise through logarithmic conversions, ignoring its specific statistical
properties [16, 17].

Among post-processing algorithms, transform-based approaches represent images in a different
domain by using wavelet or curvelet transforms. In the curvelet or wavelet domain, the coefficients
representing the image and speckle are assumed to be distinguishable. Choosing the correct
threshold for the speckle coefficients, however, is difficult [13,17,21] and the wrong selection
of coefficients causes point-like structures to disappear in the filtered images while preserving
the contrast between tissue layers [17]. Sparse representation techniques in OCT adopt a special
scanning approach in which few B-scans are captured with high nominal signal-to-noise ratio
(SNR) and used to improve the quality of low SNR B-scans. For example, multiscale sparsity-
based tomographic denoising (MSBTD) [12] utilizes the high-SNR images to train dictionaries
used in the denoising of neighboring low-SNR B-scans. MSBTDwas further improved by sparsity
based simultaneous denoising and interpolation [18], where the dictionaries were developed
from a sparse representation of previous datasets consisting of pairs of low-SNR / low-resolution
and high-SNR / high-resolution images, thus not requiring the peculiar scanning system of
the MSBTD. More recently, segmentation based sparse reconstruction has enhanced the filter
performance by using segmentation of retinal layers to construct specific structural dictionaries,
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taking advantage of similarity in the patches within segmented layers [19]. Nevertheless, the
reliance on a dictionary limits applicability: previously unobserved structures do not have
dictionary counterparts and are therefore poorly addressed. Other methods, such as block-
matching and 3D filtering (BM3D) [23–26, 37], are combinations between transform-based
and sparse representation algorithms. Although these approaches may function well in specific
instances, they tend to over-smooth regions, and visible artifacts are commonly found in the final
images.

Resolution-preserving spatial-domain techniques are mainly represented by non-local methods,
where the evaluation of each pixel is performed within a large neighborhood based on the existing
redundancy of natural images [14, 27–32, 38, 39]. Some approaches, such as the non-local means
(NLM) algorithm, denoise images by comparing patches in a surrounding neighborhood and
mapping the similarities between patches into weights in order to perform a weighted maximum
likelihood estimation of the noise-free image. The NLM algorithm has been implemented in OCT
in a probabilistic context (PNLM) [14]. However, PLNM treats speckle as additive Gaussian noise
and speckle nulls are seen to corrupt the probability calculation. These incorrectly characterized
speckle nulls remain after the filtering process, degrading image quality [14].
We have developed an NLM-based algorithm for OCT —Tomographic Non-local-means

despeckling (TNode)— built upon the polarimetric and interferometric non-local framework
developed by Deledalle et al. [31, 32, 38] for SAR images. In analogy with the SAR work,
we treat speckle based on its physical properties and use proper speckle statistics in order to
adequately estimate weights in the despeckling process. The core idea is to determine small
volumetric patches in the tomogram that represent different speckle realizations of the same
underlying object, such as small blood vessels. The incoherent averaging is performed non-locally
from these patches. Ideally, because only uncorrelated speckle realizations of the same object
are compounded, resolution is preserved and speckle contrast reduced. From speckle statistics,
we employ a general context of single speckle realization and multiple speckle realizations
tomograms to determine the speckle-free intensity. This general context allows TNode to be used
in-vivo with singlelook frame analysis and easily adapted to a context where multiple speckle
realizations are acquired.
As opposed to the approach used in SAR, we exploit the volumetric information available

in OCT by making use of 3D similarity windows to retrieve the weights from the volumetric
patch-similarity. We have developed two kinds of search windows: a 2D search window oriented
to include the fast-axis of transverse scanning for imaging in-vivo and a 3D window for motion-
artifact-free or motion-corrected volumetric tomograms. The 2D search window allows speckle
reduction even in the presence of motion artifacts as the weighted estimation from the NLM
algorithm searches for the most-similar neighbors [32], unaffected by relative distances as long as
the motion is smaller than the search window size. The 3D search window enhances the contrast
of point-like structures while preserving resolution in cross-sectional images and improving the
quality of en-face projections.
Our 3D similarity window enhances the selection of similar patches. Many tissue structures

appear one-dimensional (e.g. vessels, nerves) in traditional OCT imaging due to resolution
limitations [40,41], as shown in Fig. 1. Such structures are not generally aligned with the scanning
direction and therefore appear as point-like structures in cross-sectional views. State-of-the-art
filtering is incapable of correctly identifying these structures in a single B-scan, hence detail is lost
and only tissue layers and other larger structures are preserved. Our 3D similarity window ensures
that one- and two-dimensional structures are correctly characterized and consequently preserved
upon despeckling. In essence, TNode considers the 3D geometrical properties of volumetric
structures while performing the averaging. We do this voxel-per-voxel in a feature-agnostic way,
avoiding the need for image segmentation or dictionaries. Our results show that TNode volumes
present high-quality, cross-sectional views oriented along both slow and fast axes of transverse
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scanning, as well as in en-face views. TNode B-scans resemble those obtained from out-of-plane
averaging, without the associated out-of-plane resolution loss.

z x

y

B-scan

2D

3D

Search window

Search windowSimilarity
window

Similarity
window

Fig. 1. One-dimensional structures in OCT have speckle-sized appearance in single cross-
sections. Filtering techniques are therefore incapable of distinguish between bright contrast
speckle and retinal structures. The proposed 3D similarity window considers the volumetric
nature of structures with 3D similarity windows and a 2D or 3D search windows.

2. TNode theoretical basis

2.1. Speckle statistics

OCT imaging exhibits speckle because of the superposition of coherent light backscattered with
random phases [36]. Tomograms with a single realization of speckle have unity speckle contrast
C: the speckle fluctuations are of the order of the signal itself and the image of the underlying
object is severely degraded. To quantify the deleterious effect of speckle in coherent imaging, we
define the signal-to-speckle ratio, SSR, as the inverse of the speckle contrast: SSR= 1/C = Ī/θ,
where Ī is the speckle-free object intensity and θ the speckle standard deviation. We also define
the signal-to-noise ratio (SNR) as SNR= Is/In, where Is represents the OCT noise-free signal
intensity and In is the intensity of the noise. In this formulation, In encompasses all sources of
noise (e.g. shot, thermal, excess photon, digitization, etc.) in the OCT system [2, 42, 43].
We use speckle statistics in order to find the speckle-free object intensity by determining the

parametric distribution that is characteristic of speckle. On an intensity basis, speckle is described
by an exponential probability distribution [2, 36], which is described by a single parameter.
Assuming the object has an incoherent, speckle-free intensity θ(x) at pixel x, the probability of
measuring an intensity I(x) under coherent imaging for an arbitrary speckle realization is

p[I(x)|θ(x)] = 1
θ(x) exp

{
− I(x)
θ(x)

}
, (1)

where θ(x) is the distribution parameter. In an exponential distribution, θ(x) is the distribution
mean and standard deviation, and as explained above, it equals the mean intensity Ī(x) of a large
set of speckle realizations. Therefore, the correct determination of θ(x) is equivalent to finding
Ī(x), the underlying object intensity under incoherent imaging. Speckle suppression can be
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understood as an estimation of the parameter θ(x) from data with speckle by using uncorrelated
speckle patterns.

In OCT systems that acquire uncorrelated speckle patterns using spatial, angular, frequency or
any other type of compounding, the averaged intensity from L speckle patterns has a gamma
probability distribution [36]

p[I(x)|θ(x)] = LL

Γ(L)θ(x)L I(x)L−1 exp
{
−L

I(x)
θ(x)

}
, (2)

where Γ is the gamma function. Equation (2) describes a distribution with SSR=
√

L, and reduces
to Eq. (1) for L = 1.
Adopting SAR terminology, we refer to single-speckle-realization tomograms [Eq. (1)] as

“singlelook tomograms”, and to intensity-averaged speckle realizations [Eq. (2)] as “multilook
tomograms”.

2.2. Non-local denoising and speckle suppression

In general terms, non-local methods reduce noise by performing a weighted intensity average
among a set of regions within a vicinity [31,32,38,39]. These regions, called patches, are not
necessarily adjacent, but are ideally from anywhere in the image. The restriction to a bounded
vicinity is generally driven by performance considerations. Non-local methods base the denoising
process on the probability of two given patches to be different realizations of the noise with
the same underlying object. In this case, the pixel values of the two patches are described by a
single probability distribution with a common set of parameters and these parameters describe
the underlying noise-free object [14, 15, 28–30,35].
In the context of non-local despeckling, the goal is to determine the probability that the

pixel x being despeckled has the same underlying object —its speckle is described by the same
distribution parameter— as any other pixel x ′ inside a neighborhood or search window. To define
the probability of having a common parameter θ, the intensity I(x) in the pixel x is compared with
the intensity I(x ′) in the set of neighbors. For each comparison, the pair of pixels are considered
similar if their intensities match distributions with a common parameter θ(x, x ′), hence I(x) and
I(x ′) have a high probability of being two realizations of speckle of the same object. The pair of
pixels are considered dissimilar if their intensities have a high probability of being observations
of two distributions with different parameters θ(x) and θ(x ′), and therefore different underlying
objects [38]. This problem can be rephrased as a hypothesis test [38]:

H0 : θ(x) = θ(x ′) ≡ θ(x, x ′) (null hypothesis), (3)
H1 : θ(x) , θ(x ′) (alternative hypothesis). (4)

In practice, comparing just two pixel intensities does not provide a robust measure of similarity.
For this reason, non-local methods consider a group of pixels x, a patch, centered at the pixel
of interest x. Hereafter, we use a bold symbol to denote a vector quantity with element values
assigned to each pixel inside a patch. The set of pixels x are compared pairwise with the pixels
x′ centered at x ′. Similarly, θ(x) represents a vector of distribution parameters, and I (x) a
vector of pixel intensities, for the patch centered at x. Note that all pixels inside the patch are
not considered to share the same parameter θ. The patch size, also called similarity window,
defines the smallest structure that will be considered during comparisons [39]. Large patch sizes
improve the robustness of the similarity metric but reduce the probability of finding similar
patches because the compared structures are large. Therefore, the patch size should contain
enough independent speckles to have a robust similarity metric but not too many to compromise
the effectiveness of the despeckling process.
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A similarity criterion makes use of the two hypotheses above to map a pair of speckle patches
(x, x ′) into a single real value. The process consists of determining the similarity, Cr , pixelwise
and then compounding the probabilities inside a patch into a log-probability ∆(x, x ′):

∆(x, x ′) =
∑
q∈ x
q′∈ x′

log {Cr [I(q), I(q′)]}, (5)

where the purpose of the logarithm is to transform the product of the probabilities into a sum for
all patch pixels.

It is known that the optimal criterion, Cr , based on the hypothesis in Eq. (3), is the likelihood
ratio test [38]:

L[I (x), I (x ′)] = p[I (x); θ(x, x ′)]p[I (x ′); θ(x, x ′)]
p[I (x); θ(x)]p[I (x ′); θ(x ′)] , (6)

where the numerator is the probability p that intensities in x and x ′ have a common parameter
θ(x, x ′) and the denominator is the probability that the intensities have different parameters θ(x)
and θ(x ′). Note that there is one probability per pixel, and therefore L is a vector containing a
criterion value for each pixel in the patch. This vector is transformed into a single scalar for each
patch using Eq. (5).

In practice, the parameters θ(x), θ(x ′) and θ(x, x ′) in Eq. (6) are unknown. To address this, we
use the generalized likelihood ratio (GLR)LG , which solves this problem by replacing θ(x), θ(x ′)
and θ(x, x ′) by their maximum likelihood estimates (MLEs) t̂1, t̂2 and t̂1,2, respectively [38],

LG[I (x), I (x ′)] =
p[I (x); θ(x, x ′) = t̂1,2]p[I (x ′); θ(x, x ′) = t̂1,2]

p[I (x); θ(x) = t̂1]p[I (x ′); θ(x ′) = t̂2]
. (7)

A detailed derivation of the GLR is shown in Ref. [38]. The essence of Eq. (7) is that if the
intensities in compared pixels are likely to have the same parameter from a unique distribution,
the numerator increases and the GLR value tends to a maximum. However, if the intensities
of the pixels are more likely to be given by different individual distributions, the denominator
decreases the GLR value. In the case of identical patches, LG = 1. As the MLE for the gamma
distribution in Eq. (2) is the mean of the observed intensities (i. e. t̂1 = I (x), t̂2 = I (x ′) and
t̂1,2 = [I (x) + I (x ′)]/2), it is possible to arrive at a closed form for the GLR [38]:

LG[I (x), I (x ′)] =
(

I (x)I (x ′){ 1
2 [I (x) + I (x ′)]

}2

)L
. (8)

In TNode, we use GLR in order to map the similarities between patches into weights. Now,
referring to locations in the tomogram, the pixels x and x ′ become vectors containing the
three coordinates ®x = (x, y, z) and ®x ′ = (x ′, y′, z′), which indicate the locations in the volume.
Throughout this work, z corresponds to the depth dimension, x to the lateral fast scanning axis
and y the lateral slow scanning axis. In these terms, Eq. (5) becomes:

∆(®x, ®x ′) =
∑
®τ∈ ®p

log
(
LG[I(®x + ®τ), I(®x ′ + ®τ)]

)
, (9)

where ®τ is a 3D shift vector indicating locations in each patch such that ®x + ®τ and ®x ′ + ®τ span the
pixels in the neighborhood of x and x ′. The components of ®p correspond to the patch half-size,
with total elements P = (2px + 1) × (2py + 1) × (2pz + 1). The windows indicated by ®x + ®τ and
®x ′ + ®τ represent the similarity windows. We define a 3D similarity window that accounts for the
volumetric nature of OCT tomograms. This 3D similarity window considers one-dimensional
structures in the volumetric data that appear as point-like structures in cross-sectional views
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and ensures their preservation upon despeckling since they are correctly characterized in the
volumetric patch similarity metric.

After computing the log-probability using Eq. (9), the weights are obtained by recovering the
compound probability modified by the parameter h [38]:

w(®x, ®x ′) = exp
[
∆(®x, ®x ′)

h

]
, (10)

where h > 0 controls the overall distribution of weight values. Assuming the pixel x is being
despeckled, the weights w(®x, ®x ′) are calculated for all pixels within a vicinity and then used in
the averaging process to retrieve the speckle-free intensity at ®x. Note that w(®x, ®x ′) is a scalar.
NLM performs a weighted average over all pixels ®x ′ + ®τ in an extended vicinity ®v, called a search
window, centered at ®x and with total size V = (2vx + 1) × (2vy + 1) × (2vz + 1) [32, 39]. The
search window defines a subvolume where the central pixel ®x of the similarity window can be
located, and therefore the number of similarity windows contained in the search window is always
V regardless of the similarity window size. TNode is based on a weighted maximum likelihood
estimation of the speckle-free intensity Î(®x) in terms of a weighted average from the intensity
with speckle I(®x ′) as

Î(®x) =
∑
®x′∈®v w(®x, ®x ′)I(®x ′)∑
®x′∈®v w(®x, ®x ′)

. (11)

In the event of having an object in the similarity window with no similar neighbors within the
search window, weights will be small and thus no despeckling is performed. Now, in order to
better explain the effect of the h parameter, assume, for simplicity, two one-dimensional patches
consisting of only two pixels: patch A (xA1, xA2) and patch B (xB1, xB2). Explicitly, Eq. (10)
states

w(xA, xB) = exp
{

1
h

[
log

(
LG[I(xA1), I(xB1)]

)
+ log

(
LG[I(xA2), I(xB2)]

)]}
=(

LG[I(xA1), I(xB1)]
)1/h (

LG[I(xA2), I(xB2)]
)1/h

. (12)

Considering that 0 ≤ LG ≤ 1: if h is near unity then the weights remain unchanged; a larger
h increases the probability ratio for each pixel; and, all probability ratios approach 1 when h
approaches ∞. This implies that when h is large, all weights increase and their contributions
are equalized, which increases averaging. When h is very large the behavior approaches that
of local averaging with a kernel size equal to the search window. Finally, the weight definition
in Eq. (10) is unaffected by the relative distance between patches; it is influenced only by the
patch-similarity, making TNode completely non local.
In general, the weight for the self similarity is significantly larger than any other weight

w(®x, ®x) � w(®x, ®x ′){x′ |x′,x } and therefore, for effective despeckling, we have found that h needs
to take a value around 50 . h . 100. In most cases, it is more effective to replace the self
similarity by a value given by all the other values in the search window, such as a multiple of the
maximum [28]. This produces a more consistent despeckling, reduces the value of h needed and
homogenizes the despeckling behavior for different samples. In this work, we replace the self
similarity by w(®x, ®x) = max [w(®x, ®x ′){x′ |x′,x }].

Figure 2 describes the idea behind TNode. As presented in Eq. (2), the exponential distribution
followed by speckle in singlelook intensities (L = 1) turns into a Rayleigh distribution if an
average between two images is produced (L = 2); it transforms into a Gaussian-like distribution
when more intensities are averaged [36]. In the ideal case, after acquiring a large number of
realizations (L → ∞), the mean intensity corresponds to the parameter of the distribution, as
shown in Fig. 2(a). However, this requires the acquisition of multiple speckle realizations. The
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NLM algorithm uses patches inside the image [Fig. 2(b)] in order to produce a mean intensity
similar to that obtained after averaging many speckle realizations [32]. The similarity windows
depicted in Fig. 2(b) are shown for illustrative purposes. Ideally, the search window should be
comprised of the entire data set; in practice, the search window is limited to a given subvolume
by memory usage and maximum allowable computation time. The circular patches, 1 to 3, and
the square patches, 4 to 7, in Fig. 2(b) illustrate how different patches in the image look alike,
and averaging their pixels can produce a despeckled image.

1 2 3

7654

54 6 7

1 2 3

Intensity

P
ro
b
ab
il
it
y

I=θ

L=∞

L=1
L=2
L=5

(a) (b)

Fig. 2. Representation of the gamma probability density function in Eq. (2) obtained when
averaging L realizations of speckle (a). Patch comparison performed in NLM algorithms (b):
multiple patches are compared and the probability of having a common underlying object is
measured with the GLR to produce the averaged intensity. Patches and their distances are for
illustrative purposes; actual patches are 3D and generally comprise only a few pixels per
dimension.

Unlike in radar imaging, OCT has a wide SNR range, reaching 50dB or more. In regions with
low SNR, the similarity criterion in Eq. (8) may produce artificially high values, as the noise in
the tomogram arises from a unique distribution parameterized by the average noise intensity with
the same statistical properties as speckle —a circular complex Gaussian random variable. To
account for this, we modify the filtering parameter, h, to achieve the same level of despeckling
across a wide range of SNRs. Guided by the functional relationship between the correlation
coefficient of OCT signals and their SNR [44], we propose the following form for h:

h = h0 +
h1

1 + 1
SNR

, (13)

where h0 is the base despeckling parameter and h1 is an SNR-dependent parameter. With this
criterion, in regions with low-SNR h approaches h0 when SNR→ 0, increasing the selectivity in
the averaging process. In high-SNR regions, h increases (h = h0 + h1 for SNR→∞), relaxing
the similarity criterion and therefore equalizing the weights of similar neighboring patches.

3. Experimental results

3.1. Ophthalmic OCT imaging

We tested the performance of TNode in an eye scan of a healthy volunteer acquired with a
Spectralis OCT2 Imaging System (Heidelberg Engineering, Germany). This spectral-domain
OCT system uses a super luminescent diode with 870 nm central wavelength, 50 nm bandwidth
and an A-line acquisition rate of 85 kHz. We selected a region of interest (ROI) consisting of
257 B-scans with 512 A-lines per B-scan and 640 depth samples. We produced a multilook
tomogram by recording four speckle realizations (L = 4). The axial pixel size of the reconstructed
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tomograms is 3.9 µm in air, the A-line spacing is 14 µm and the B-scan spacing is 28 µm.We used
a similarity window with τ = 7 × 7 × 7 pixels, equivalent to ≈ 4 × 7 × 2 speckles. We despeckled
the data set using a two-dimensional search window (TNode 2D with v = 41 × 1 × 21 pixels, 861
locations containing ≈ 180 distinct speckles) oriented in the fast transverse scanning plane prior
to correction of motion artifacts between B-scans. We also performed despeckling after motion
correction with a three-dimensional search window (TNode 3D with v = 15 × 5 × 11 pixels, 825
locations containing ≈ 170 distinct speckles). We set the base filtering parameter h0 = 0 and the
SNR-dependent parameter h1 = 40 for singlelook and h1 = 100 for multilook tomograms.

Figure 3 presents an individual B-scan and the results of despeckled B-scans with the following
algorithms: out-of-plane averaging (OOPA), block matching and 3D filtering (BM3D) [37],
probabilistic non-local means (PNLM) [14] and our TNode with both 2D and 3D search windows.
We used default parameters in all algorithms and produced OOPA with seven adjacent B-scans
after correction of motion artifacts. After motion correction, neighboring B-scans exhibited
similar structures and the spatial compounding produced by OOPA reduced speckle successfully.
However, since 1D structures may be located in different positions across B-scans, there is
potential for loss in spatial resolution. This effect can be seen in the insets (red box). BM3D, as a
processing algorithm designed for white noise suppression, requires transformation of speckle
into additive noise through a logarithmic conversion. This may result in artifacts and speckle
remains visible in the filtered B-scans. PNLM relies on characterizing speckle nulls by measuring
the probability of having signal or speckle in each pixel; undetected speckle nulls remain visible
in the despeckled B-scans. TNode-filtered B-scans resemble the visual appearance of OOPA but
without the associated degradation of resolution. Similar results are obtained with the 2D search
window with motion artifacts and the 3D window after correction of motion. However, TNode
in 3D enhances layer homogeneity after despeckling, as evidenced by the photoreceptor layer
(orange box). For a comparison of the tomograms after despeckling see Visualization 1.

In order to show the resolution-preserving and volumetric nature of TNode, we focus now on
blood vessels in the ganglion cell layer of the eye scan after despeckling the tomogram. Generally,
OCT angiography would be used for visualizing blood vessels. Here, we take advantage of their
one-dimensional structure to evaluate the resolution after despeckling. To facilitate visualization
of the volumetric data, we flattened the tomogram, referenced to the retinal pigment epithelium
layer, and performed correction of motion artifacts. Figure 4 presents a comparison of en-face
and cross-sectional views of the eye scan, showing the original volume and results of spatial
compounding with OOPA and after despeckling with TNode 3D. As OOPA takes advantage of
the similarity between neighboring B-scans, retinal layers are well-defined after despeckling.
The orange and green arrows show large blood vessels which are difficult to identify in single
cross-sections but easier to identify in en-face projections. After OOPA, these large vessels
become more visible due to their high scattering compared to avascular tissue. However, because
their location shifts among B-scans, OOPA produces significant blurring after the averaging
process. In contrast, TNode prevents this blurring as the similarity is evaluated non-locally to
produce the weighted average.

The red box in Fig. 4 highlights an ROI containing two blood vessels, closely spaced along the
x axis. In the original tomogram, the vessels appear as two speckles, slightly brighter than the
surrounding tissue. There is simply not enough information in a single B-scan to infer the true
identity of these two speckles. In the OOPA case, the resolution loss associated with averaging
multiple B-scans is evident: the two vessels appear as a single blurred bright area. In contrast,
as TNode exploits volumetric structures when despeckling, the geometrical distribution of the
vessels is considered in the averaging. This ensures that bright pixels containing information
belonging to a one-dimensional structure are preserved in both axes while surrounding speckle is
suppressed. The blue box highlights an ROI where a blood vessel appears as a bright speckle.
After using OOPA, the resolution loss and the low contrast produces a blurred bright area. The
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Fig. 3. Native single-look cross-sectional view of human retina in vivo (a) and corresponding
images despeckled with (b) OOPA, (c) PNLM, (d) BM3D, (e) TNode 2D and (f) TNode 3D.
The insets at right are organized in the same order. See Visualization 1 for a comparison of
the full tomogram.

same vessel is clearly visible after using TNode. Note that even with anisotropic sampling along
axes, the en-face view and longitudinal cross-section zy exhibit a homogeneous speckle reduction
without evident resolution degradation.

As TNode can be used in tomograms captured with multiple realizations of speckle and
previously averaged tomograms, we tested its performance after averaging the four realizations
acquired with the eye scan. Since perfused tissue varies speckle dynamically during acquisition,
most of the improvement involved in the multiple realizations and multilook process is achieved
near vascular tissue, while static avascular tissue remains largely unaffected. Figure 5 is a
comparison between single and multilook en-face views in the outer plexiform layer of the same
eye scan after flattening. We have adjusted the dynamic range of the images in the multilook case,
where we have found an increase in the mean intensity after producing the compound intensities.
The mean intensity of the multilook tomogram is 2.7 dB higher compared to the singlelook case,
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Fig. 4. Orthogonal views of tomograms before (a) and after despeckling using OOPA (b)
and TNode 3D (c). TNode preserves the two speckle-sized vessels shown in the red box as
two independent structures, while OOPA merges them into a single structure. Resolution in
the yz projection (small blood vessel in blue box) is mostly preserved in TNode. Scale bars
correspond to 300µm in each direction.

therefore we shifted the intensity range to match this increase. This modification has been applied
to the multilook tomogram after using TNode as well.

Figure 5 clearly shows how perfused tissue in the multilook images has improved contrast with
respect to the singlelook images. Moreover, after despeckling with TNode, vessels are preserved.
Structures strongly corrupted by the presence of speckle are clearly noticeable after despeckling,
as indicated in the boxes in Fig. 5. See Visualization 1 for a comparison of the en-face views of
the tomogram.

3.2. Gastrointestinal OCT

The voxel-per-voxel approach of TNode, without the need for dictionaries, enables its use in any
imaging application of OCT. To demonstrate this, we used TNode to despeckle a gastrointestinal
OCT (GI-OCT) clinical data set, acquired in a recently completed clinical registry [45], with an
NvisionVLE Imaging System (NinePoint Medical, Inc., Bedford, Massachusetts) [46]. This is a
frequency-domain OCT system with a wavelength-swept laser centered at 1310 nm and with a
90 nm sweep range and a 50 kHz A-line repetition rate. We selected an ROI of 300 B-scans with
1024 A-lines per B-scan (out of the 4096 A-lines per B-scan in the full volume) and 900 pixels
in depth. The data set was processed with OOPA using 7 adjacent B-scans, the PNLM filter
with default parameters and TNode 3D, in all cases, non-uniform rotational distortion (NURD)
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Fig. 5. En-face view comparison of a single layer in the outer plexiform layer with single
and multilook tomograms: singlelook (a) and multilook (b) tomograms with speckle, and
corresponding singlelook (c) and multilook (d) after using TNode 3D. Boxes highlight
structures corrupted by speckle that appear clearer after TNode. See Visualization 2 for a
comparison of the tomogram.

correction [47] was previously performed. The axial pixel size of the reconstructed tomograms is
6 µm in air. The OCT system has a transverse e−2 beam radius of 33 µm, the A-line spacing is
≈ 15 µm and the B-scan spacing is ≈ 50 µm. Because of the highly anisotropic lateral sampling,
we used a similarity window with τ = 11 × 7 × 7 pixels equivalent to ≈ 7 × 7 × 2 speckles, and a
search window with v = 13 × 5 × 9 pixels (585 locations containing ≈ 120 distinct speckles).
The parameters were set to h0 = 0 and h1 = 45.

Figure 6 presents the comparison of the ROI cross-sectional view with the obtained results.
As motion artifacts, even after NURD correction, are routine in endoscopic OCT because of
patient involuntary motion, OOPA-processed B-scans have very poor quality, with structures,
such as glands, and tissue morphology appearing significantly blurred and with reduced contrast.
The PNLM filtered B-scan shows speckle nulls which were unrecognized during the calculation
of the corruption probability. Additionally, because of the high SNR range in GI-OCT data,
which is significantly higher than in ophthalmic data, some high-SNR regions still present
significant speckle, while low-SNR regions have an over-smoothed appearance. Our results
indicate that TNode 3D produces the highest homogeneity in the B-scan while preserving most
of the morphological information, even with evident patient motion. The TNode 3D B-scan
shows a significant reduction of speckle, preserving contrast and maintaining the structural and
morphological characteristics of tissue. A homogeneous reduction of speckle is evident across
the whole B-scan. For a comparison of the 300 B-scans see Visualization 3.

3.3. Phantom data and quantitative quality metrics

Quantitative image metrics, such as the contrast-to-noise ratio or the peak signal-to-noise ratio,
rely on having known homogeneous regions or access to the underlying speckle-free intensity.
When applied to natural images, these metrics are prone to misinterpretation because over-
smoothed images with lack of detail get highly rated. In order to calculate meaningful image
quality metrics, we performed an experiment with a three-dimensional structured phantom made
from cellulose. The detailed cellulose structure was obtained in an OCT scan by immersing the
phantom in water. This allowed us to define regions with signal produced exclusively by the
phantom and void regions defined as the background. Next, we added intralipid at 20% volume
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Fig. 6. GI-OCT cross-section comparison of data with speckle (a) and after using OOPA (b),
PNLM (c) and TNode 3D (d). TNode exhibits a superior despeckling performance at all
SNRs. See Visualization 3 for a comparison of the 300 B-scans.

concentration to the water bath to create scattering in the cellulose voids. We acquired 2 volumes
at different intralipid concentrations, corresponding to 1% and 0.3%.
The volumes were acquired with a custom-built wavelength-swept source OCT system, with

1310 nm central wavelength, 130 nm bandwidth and an A-line repetition rate of 54 KHz. We
selected an ROI having 256 B-scans with 256 A-lines per B-scan and 256 depth samples, acquired
with an objective lens with 35 µm e−2 beam diameter. The reconstructed tomograms had an
A-line spacing of 10 µm, a B-scan spacing of 10 µm and an axial pixel size of 6 µm in air. In order
to quantitatively compare the performance of TNode with other speckle-reduction algorithms,
we despeckled the phantom tomograms with OOPA, BM3D and PNLM. For TNode, we used a
τ = 7×7×7 pixels similarity window, equivalent to ≈ 4×7×2 speckles, a v = 41×1×21 pixels
(861 locations containing ≈ 180 distinct speckles) two-dimensional search window for TNode
2D and a v = 15 × 5 × 11 pixels three-dimensional search window for TNode 3D (825 locations
containing ≈ 170 distinct speckles). Although the objective lens has the same lateral resolution
in the x and y axes, the Brownian motion of the lipid particles produced decorrelated speckle
patterns across B-scans regardless of the B-scan spacing; this effect was considered in the
calculations above. We set the base filtering parameter h0 = 0 and the SNR-dependent parameter
h1 = 38. We produced OOPA with seven adjacent B-scans and set default parameters for PNLM
and BM3D. For BM3D and PNLM tomograms images were first transformed into logarithmic
scale, while in OOPA and TNode tomograms were kept on a linear scale.

With clearly defined homogeneous areas (corresponding to cellulose voids filled with intralipid),
we defined three two-dimensional ROIs corresponding to small cellulose structures surrounded
by intralipid for all possible projections: A is an xy (en-face) ROI, B is an yz ROI and C an xz
ROI [see Fig. 7(a)]. The phantom in water was used to define a mask for the pixels containing the
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cellulose structure, which when immersed in intralipid had an intensity IS(®x), and the inverse
mask for the background containing intralipid with intensity IIL(®x). Logarithmic counterparts to
these intensities are denoted by L [LX (®x) ≡ 10 log10 IX (®x)]. Based on these, we calculated the
following quality metrics:

1. The average contrast between cellulose and intralipid, defined as ĪS/ĪIL , where¯denotes
the average among all the pixels ®x in a given ROI. This average implicitly removes the
speckle fluctuations and therefore, when calculated in a singlelook tomogram, defines a
speckle-free ideal contrast. Despeckling algorithms should preserve this contrast as much
as possible.

2. The contrast-to-noise ratio (CNR) [48, 49] defined as
(
L̄S − L̄IL

)
/
√
σ(LS)2 + σ(LIL)2,

where σ(L) corresponds to the standard deviation of the intensity L in an ROI. CNR
describes the contrast between two regions of different intensities in presence of noise,
and uses logarithmic intensity to characterize this metric in a similar manner to when
tomograms are examined visually. Despeckling algorithms should heavily reduce σIL ,
increasing the CNR. σS is expected to decrease. However, its value will be dominated
by changes in the intensity of the structure itself. Nevertheless, a reduction in the overall
contrast in the image as a result of despeckling will contribute to a reduction of the CNR.

3. The equivalent number of looks (ENL) [49] is defined as EN L = SSR2 = Ī2
IL/σ2

IL , and
provides an estimation of the number of uncorrelated speckle patterns used to achieve a
given image quality (see Eq. (2). As such, this is a metric related solely to the quality of the
despeckling. To guarantee enough data for proper statistics, a larger dedicated background
ROI was used to calculate the ENL.

Figure 7(a) presents three orthogonal views of the phantom immersed in water. The three
ROIs with cellulose structure (A, B, C) are indicated in solid-line boxes and three homogeneous
(background) ROIs (Abg, Bbg, Cbg) are indicated in dashed-line boxes. The contrast and CNR
were evaluated inside (A, B, C), while the ENL was calculated in their corresponding (Abg,
Bbg, Cbg). Figures 7(b)–7(e) show the yz cross-sectional view containing ROIs B and Bbg after
despeckling at 0.3% intralipid concentration. The image processed with OOPA [Fig. 7(c)] exhibits
the classic deterioration of out-of-plane resolution. BM3D [Fig. 7(d)] and PNLM [Fig. 7(e)]
exhibit remnant speckle fluctuations throughout the image, while TNode 2D and TNode 3D show
a similar preservation of the cellulose structure with a superior degree of speckle reduction.
Figure 8(a) shows the despeckling results for ROI B at two intralipid concentrations. An

increase in the intralipid concentration reduces the contrast with the cellulose. In order to assess
the resolution loss after despeckling, we measured the full width at half-maximum (FWHM) of the
cellulose structure across the lines indicated in Fig. 8(a) and (b) at 0.3% intralipid concentration.
The FWHM for the singlelook tomograms was measured at a location away from a speckle null.
The FWHM in water corresponds to the FWHM expected for the PSF of the objective lens, once
the confocality is taken into account (35µm/

√
2/
√

2 ln 2 = 21µm FWHM). Our results indicate
that the FWHM increases from ≈20 µm to ≈30 µm after immersion in intralipid. However, it
does not further increase after despeckling with BM3D, PNLM and TNode. The increase in
FWHM between water and intralipid could be attributed to the change in the liquid-air interface
geometry given by surface tension, which would deform the cellulose structure between the two
measurements. In the case of OOPA, as expected, the FHWM of the structure is increased by a
factor of ≈ 2 compared with other despecking algorithms. This is not a definitive conclusion,
because assessing resolution in scattering media is a complex task. Alternative experiments, such
as evaluating the ability to separate two sources inside a scattering medium, implies the use of
phantoms with extremely large homogeneous regions, which facilitate despeckling unrealistically.
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Fig. 7. Tomogram of the phantom: (a) cellulose structure immersed in water, (b) single cross-
section of the cellulose structure immersed in 0.3% intralipid, and results after despeckling
with (c) OOPA, (d) BM3D, (e) PNLM, (f) TNode 2D and (g) TNode 3D. Scale bars are
300 µm for all axes.
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Fig. 8. Region B in Fig. 7 despeckled with different concentrations of intralipid (IL) (a), and
intensity line profiles (in linear scale) at 0.3% intralipid concentration (b).

We measured the contrast, CNR and ENL for the two intralipid concentrations. The numerical
results are tabulated in Table 1. Overall, the contrast drops less than 1 dB for most algorithms
and therefore this performance metric is comparable for all of them. For the 0.3% intralipid, the
visually strong performance of TNode is numerically supported by the results of the CNR and
ENL. TNode 3D had consistently the highest CNR among all algorithms, meaning that details in
the image are preserved and are visually more evident after despeckling. Interestingly, despite the
drop in contrast and CNR of the singlelook tomogram going from 0.3% to 1% intralipid, TNode
3D is able to generate a despeckled ROI with a similar CNR for both concentrations. In terms of
pure speckle suppression, TNode significantly outperforms all other techniques as quantified
by the ENL. We believe our phantom experiments —as well as the ophthalmic data— support
the conclusion that the possible resolution loss of TNode in a realistic sample, with intertwined
regions of fine structures and homogeneous scattering, is very small. Together with its excellent
despeckling performance as quantified by the ENL, its improvement of CNR and its preservation
of contrast, TNode outperforms all other state-of-the-art techniques for despeckling OCT scans,
improving the interpretation of OCT volumes of scattering media.

                                                                           Vol. 9, No. 7 | 1 Jul 2018 | BIOMEDICAL OPTICS EXPRESS 3370 



Table 1. Comparison of the performance of despeckling techniques in terms of contrast,
CNR and ENL for the three concentrations.

Contrast [dB] CNR ENL
Region A B C A B C Abg Bbg Cbg
Projection xy yz xz xy yz xz xy yz xz
0.3% IL
Singlelook 10.1 12.8 10.4 1.4 1.5 1.3 1.2 1.1 1.3
OOPA 7.2 13.8 7.4 1.6 2.2 1.9 8.1 8.1 8.6
BM3D 9.2 11.3 9.4 1.8 2.1 1.9 8.3 5.9 8.4
PNLM 9.2 11.5 9.4 1.7 1.8 1.7 12 8.3 10
TNode 2D 9.5 12.7 10.0 2.1 2.2 2.1 20 72 61
TNode 3D 9.5 12.7 10.3 2.4 2.5 2.1 12 99 102
1% IL.
Singlelook 6.6 8.1 7.6 1.0 1.1 1.2 1.2 1.1 0.9
OOPA 5.4 8.6 5.6 1.5 1.4 2.2 7.9 7.7 5.1
BM3D 5.8 7.0 6.6 1.7 1.7 1.8 7.7 7.1 5.0
PNLM 5.3 6.5 6.0 1.4 1.4 1.8 6.5 6.9 4.7
TNode 2D 5.4 7.1 6.6 1.8 1.6 2.6 43 85 44
TNode 3D 5.5 6.9 6.8 2.4 1.8 2.9 30 100 65

Singlelook parameters are indicated in italics. The best parameter value for each region and quality metric
among all despeckling techniques is highlighted in purple. Regions A, B, C and backgrounds Abg, Bbg
and Cbg are those defined in Fig. 7.

4. Conclusion

In conclusion, we have presented a novel despeckling technique for OCT, TNode, which is based on
the non-local means algorithm with proper speckle statistics. TNode uses a 3D similarity window
that leverages the volumetric nature of OCT data and accounts for the full three-dimensional
geometry of structures normally found in OCT imaging. By using the generalized likelihood ratio
to retrieve the volumetric patch similarity, we used a weighted maximum likelihood estimation to
compute the speckle-free intensity tomogram, while permitting the use of single and compound
tomograms with multiple speckle realizations. By accounting for the high dynamic range of OCT
tomograms, we achieved homogeneous reduction of speckle at all depths.
In the retinal data set, visual comparison of the results obtained with different despeckling

techniques demonstrated the strong performance of TNode in terms of resolution and speckle
reduction. Cross-sectional and en-face views after despeckling showed the preservation of
resolution in all dimensions, while conserving even speckle-sized structures. In singlelook
and multilook tomograms the contrast improvement accomplished with TNode was evident.
Even when applied to OCT data having significant motion artifacts, such as images acquired
endoscopically in the gastrointestinal tract, TNode showed excellent speckle reduction while
preserving resolution. With the phantom data, we demonstrate the potential of TNode for
resolution and structure preservation and reduction of speckle, by using different metrics to
quantitatively evaluate the quality of filtered images.
Since speckle statistical properties are common to all coherent imaging techniques, TNode

could be used in other volumetric techniques, such as ultrasound imaging. However, we believe
its strongest impact could come with its use as a pre-processing step in advanced OCT signal
processing. For example, OCT intensity-based tractography [50–52] could greatly benefit from
a resolution-preserving despeckling technique to improve the tracking process. Polarization-
sensitive OCT in the Stokes formalism could also greatly benefit from TNode [53–56], where it

                                                                           Vol. 9, No. 7 | 1 Jul 2018 | BIOMEDICAL OPTICS EXPRESS 3371 



could mitigate the negative effect of speckle nulls in retardation and optical axis calculations and
reduce the associated lateral resolution degradation.

5. Supporting material

We have made a Matlab implementation of TNode, Code 1, available at Ref. [57] as well as on
http://octresearch.org, including the full source code of TNode 2D and TNode 3D,
as well as exemplary raw datasets for testing purposes.
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