Quasi-isometric mesh parameterization using heat-based geodesics and poisson surface fills

dc.citation.journalTitleMathematicseng
dc.contributor.authorMejia-Parra D.
dc.contributor.authorSánchez J.R.
dc.contributor.authorPosada J.
dc.contributor.authorRuiz-Salguero O.
dc.contributor.authorCadavid C.
dc.contributor.departmentUniversidad EAFIT. Departamento de Ingeniería Mecánicaspa
dc.contributor.researchgroupLaboratorio CAD/CAM/CAEspa
dc.date.accessioned2021-04-16T21:59:59Z
dc.date.available2021-04-16T21:59:59Z
dc.date.issued2019-01-01
dc.description.abstractIn the context of CAD, CAM, CAE, and reverse engineering, the problem of mesh parameterization is a central process. Mesh parameterization implies the computation of a bijective map ? from the original mesh M ? R3 to the planar domain ?(M) ? R2. The mapping may preserve angles, areas, or distances. Distance-preserving parameterizations (i.e., isometries) are obviously attractive. However, geodesic-based isometries present limitations when the mesh has concave or disconnected boundary (i.e., holes). Recent advances in computing geodesic maps using the heat equation in 2-manifolds motivate us to revisit mesh parameterization with geodesic maps. We devise a Poisson surface underlying, extending, and filling the holes of the mesh M. We compute a near-isometric mapping for quasi-developable meshes by using geodesic maps based on heat propagation. Our method: (1) Precomputes a set of temperature maps (heat kernels) on the mesh; (2) estimates the geodesic distances along the piecewise linear surface by using the temperature maps; and (3) uses multidimensional scaling (MDS) to acquire the 2D coordinates that minimize the difference between geodesic distances on M and Euclidean distances on R2. This novel heat-geodesic parameterization is successfully tested with several concave and/or punctured surfaces, obtaining bijective low-distortion parameterizations. Failures are registered in nonsegmented, highly nondevelopable meshes (such as seam meshes). These cases are the goal of future endeavors. © 2019 by the authors.eng
dc.identifierhttps://eafit.fundanetsuite.com/Publicaciones/ProdCientif/PublicacionFrw.aspx?id=9857
dc.identifier.doi10.3390/math7080753
dc.identifier.issn22277390
dc.identifier.otherWOS;000482856500100
dc.identifier.otherSCOPUS;2-s2.0-85071185884
dc.identifier.urihttp://hdl.handle.net/10784/29550
dc.languageeng
dc.publisherMDPI AG
dc.relation.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85071185884&doi=10.3390%2fmath7080753&partnerID=40&md5=a35aee1b885b50c247c9fbd70fec1731
dc.rightshttps://v2.sherpa.ac.uk/id/publication/issn/2227-7390
dc.sourceMathematics
dc.subject.keywordGeodesic mapseng
dc.subject.keywordHeat transfer analysiseng
dc.subject.keywordMesh parameterizationeng
dc.subject.keywordPoisson fillseng
dc.titleQuasi-isometric mesh parameterization using heat-based geodesics and poisson surface fillseng
dc.typeinfo:eu-repo/semantics/articleeng
dc.typearticleeng
dc.typeinfo:eu-repo/semantics/publishedVersioneng
dc.typepublishedVersioneng
dc.type.localArtículospa

Archivos

Colecciones