Towards an improved asum-dm process methodology for cross-disciplinary multi-organization geographically-distributed big data & analytics projects
dc.contributor.advisor | Tabares Betancur, Marta Silvia | spa |
dc.contributor.author | Angee Agudelo, Santiago | |
dc.coverage.spatial | Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees | eng |
dc.creator.degree | Magíster en Ingeniería | spa |
dc.creator.email | sangeea@eafit.edu.co | spa |
dc.date.accessioned | 2018-11-27T17:39:34Z | |
dc.date.available | 2018-11-27T17:39:34Z | |
dc.date.issued | 2018 | |
dc.description.abstract | In recent years, the big data & analytics projects developed in big enterprises or excellence centers have special conditions like being cross-disciplinary, having participants geographically distant one another, and the participation of several organizations. This has caused that traditional methodologies used to undertake data analytics, like CRISP-DM or other emerging methodologies, be not sufficient to perform an appropriate project management. This proposal uses Design Science Research Methodology (DSRM) to identify a problem, define the objectives for a solution, design, develop and show the usage of an ASUM-DM based big data & analytics process methodology for cross-disciplinary, multi-organization, geographically-distributed work teams. The results generated are a big data & analytics project management process methodology and a gap analysis applied on three enterprise-university use cases, showing how the proposed methodology can help address the big data characteristics of a project, and coordinate and integrate several multi-organization, geographically-distributed, cross-disciplinary work teams. This process methodology is expected to ease practitioners and researchers the implementation and management of big data & analytics projects with the participation of several cross-disciplinary work teams, and geographicallydistributed organizations. | spa |
dc.format | application/pdf | eng |
dc.identifier.ddc | 006.312 A581 | |
dc.identifier.uri | http://hdl.handle.net/10784/13221 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad EAFIT | spa |
dc.publisher.department | Escuela de Ingeniería | spa |
dc.publisher.program | Maestría en Ingeniería | spa |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | spa |
dc.rights.local | Acceso cerrado | spa |
dc.subject | Procesos | spa |
dc.subject.keyword | Big data | spa |
dc.subject.keyword | Analytics | spa |
dc.subject.keyword | Process methodology | spa |
dc.subject.keyword | Project management | spa |
dc.subject.keyword | CRISP-DM | spa |
dc.subject.keyword | ASUMDM | spa |
dc.subject.keyword | Multidisciplinary | spa |
dc.subject.keyword | Cross-disciplinary | spa |
dc.subject.keyword | Geographically-distributed | spa |
dc.subject.keyword | Multi-organization | spa |
dc.subject.lemb | Big data | spa |
dc.subject.lemb | Minería de datos | spa |
dc.title | Towards an improved asum-dm process methodology for cross-disciplinary multi-organization geographically-distributed big data & analytics projects | spa |
dc.type | masterThesis | eng |
dc.type | info:eu-repo/semantics/masterThesis | eng |
dc.type.hasVersion | acceptedVersion | eng |
dc.type.local | Tesis de Maestría | spa |
Archivos
Bloque original
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- Santiago_AngeeAgudelo_2018.pdf
- Tamaño:
- 2.39 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Trabajo de grado
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 2.5 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: