Towards an improved asum-dm process methodology for cross-disciplinary multi-organization geographically-distributed big data & analytics projects

dc.contributor.advisorTabares Betancur, Marta Silviaspa
dc.contributor.authorAngee Agudelo, Santiago
dc.coverage.spatialMedellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degreeseng
dc.creator.degreeMagíster en Ingenieríaspa
dc.creator.emailsangeea@eafit.edu.cospa
dc.date.accessioned2018-11-27T17:39:34Z
dc.date.available2018-11-27T17:39:34Z
dc.date.issued2018
dc.description.abstractIn recent years, the big data & analytics projects developed in big enterprises or excellence centers have special conditions like being cross-disciplinary, having participants geographically distant one another, and the participation of several organizations. This has caused that traditional methodologies used to undertake data analytics, like CRISP-DM or other emerging methodologies, be not sufficient to perform an appropriate project management. This proposal uses Design Science Research Methodology (DSRM) to identify a problem, define the objectives for a solution, design, develop and show the usage of an ASUM-DM based big data & analytics process methodology for cross-disciplinary, multi-organization, geographically-distributed work teams. The results generated are a big data & analytics project management process methodology and a gap analysis applied on three enterprise-university use cases, showing how the proposed methodology can help address the big data characteristics of a project, and coordinate and integrate several multi-organization, geographically-distributed, cross-disciplinary work teams. This process methodology is expected to ease practitioners and researchers the implementation and management of big data & analytics projects with the participation of several cross-disciplinary work teams, and geographicallydistributed organizations.spa
dc.formatapplication/pdfeng
dc.identifier.ddc006.312 A581
dc.identifier.urihttp://hdl.handle.net/10784/13221
dc.language.isoengspa
dc.publisherUniversidad EAFITspa
dc.publisher.departmentEscuela de Ingenieríaspa
dc.publisher.programMaestría en Ingenieríaspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.localAcceso cerradospa
dc.subjectProcesosspa
dc.subject.keywordBig dataspa
dc.subject.keywordAnalyticsspa
dc.subject.keywordProcess methodologyspa
dc.subject.keywordProject managementspa
dc.subject.keywordCRISP-DMspa
dc.subject.keywordASUMDMspa
dc.subject.keywordMultidisciplinaryspa
dc.subject.keywordCross-disciplinaryspa
dc.subject.keywordGeographically-distributedspa
dc.subject.keywordMulti-organizationspa
dc.subject.lembBig dataspa
dc.subject.lembMinería de datosspa
dc.titleTowards an improved asum-dm process methodology for cross-disciplinary multi-organization geographically-distributed big data & analytics projectsspa
dc.typemasterThesiseng
dc.typeinfo:eu-repo/semantics/masterThesiseng
dc.type.hasVersionacceptedVersioneng
dc.type.localTesis de Maestríaspa

Archivos

Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
Santiago_AngeeAgudelo_2018.pdf
Tamaño:
2.39 MB
Formato:
Adobe Portable Document Format
Descripción:
Trabajo de grado
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.5 KB
Formato:
Item-specific license agreed upon to submission
Descripción: