Measuring intra-urban poverty using land cover and texture metrics derived from remote sensing data
dc.citation.journalTitle | LANDSCAPE AND URBAN PLANNING | |
dc.contributor.author | Duque, Juan C. | spa |
dc.contributor.author | Patino, Jorge E. | spa |
dc.contributor.author | Ruiz, Luis A. | spa |
dc.contributor.author | Pardo-Pascual, Josep E. | spa |
dc.contributor.department | Universidad EAFIT. Departamento de Economía y Finanzas | spa |
dc.contributor.researchgroup | Research in Spatial Economics (RISE) | eng |
dc.date.accessioned | 2021-04-12T14:26:14Z | |
dc.date.available | 2021-04-12T14:26:14Z | |
dc.date.issued | 2015-03-01 | |
dc.description.abstract | This paper contributes empirical evidence about the usefulness of remote sensing imagery to quantify the degree of poverty at the intra-urban scale. This concept is based on two premises: first, that the physical appearance of an urban settlement is a reflection of the society; and second, that the people who reside in urban areas with similar physical housing conditions have similar social and demographic characteristics. We use a very high spatial resolution (VHR) image from one of the most socioeconomically divergent cities in the world, Medellin (Colombia), to extract information on land cover composition using per-pixel classification and on urban texture and structure using an automated tool for texture and structure feature extraction at object level. We evaluate the potential of these descriptors to explain a measure of poverty known as the Slum Index. We found that these variables explain up to 59% of the variability in the Slum Index. Similar approaches could be used to lower the cost of socioeconomic surveys by developing an econometric model from a sample and applying that model to the rest of the city and to perform intercensal or intersurvey estimates of intra-urban Slum Index maps. (C) 2014 Elsevier B.V. All rights reserved. | eng |
dc.identifier | https://eafit.fundanetsuite.com/Publicaciones/ProdCientif/PublicacionFrw.aspx?id=1174 | |
dc.identifier.issn | 01692046 | |
dc.identifier.issn | 18726062 | |
dc.identifier.other | WOS;000347508700003 | |
dc.identifier.other | SCOPUS;2-s2.0-84919675390 | |
dc.identifier.uri | http://hdl.handle.net/10784/28020 | |
dc.language.iso | eng | eng |
dc.publisher | ELSEVIER SCIENCE BV | |
dc.relation.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-84912051604&doi=10.1016%2fj.landurbplan.2014.11.009&partnerID=40&md5=fd50936c3d05954f5d2105bfd6abd061 | |
dc.rights | https://v2.sherpa.ac.uk/id/publication/issn/0169-2046 | |
dc.source | LANDSCAPE AND URBAN PLANNING | |
dc.subject.keyword | Intra-urban poverty | eng |
dc.subject.keyword | Slum index | eng |
dc.subject.keyword | Remote sensing | eng |
dc.subject.keyword | Regional science | eng |
dc.title | Measuring intra-urban poverty using land cover and texture metrics derived from remote sensing data | eng |
dc.type | article | eng |
dc.type | info:eu-repo/semantics/article | eng |
dc.type | info:eu-repo/semantics/publishedVersion | eng |
dc.type | publishedVersion | eng |
dc.type.local | Artículo | spa |
Archivos
Bloque original
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- 1-s2.0-S0169204614002692-main.pdf
- Tamaño:
- 3.61 MB
- Formato:
- Adobe Portable Document Format
- Descripción: