Some embedding theorems for Hörmander-Beurling spaces

dc.citation.journalTitleJournal Of Mathematical Analysis And Applications
dc.contributor.authorMotos, Joaquin
dc.contributor.authorJesus Planells, Maria
dc.contributor.authorVillegas G, Jairo
dc.contributor.departmentUniversidad EAFIT. Departamento de Cienciasspa
dc.contributor.researchgroupMatemáticas y Aplicacionesspa
dc.creatorMotos, Joaquin
dc.creatorJesus Planells, Maria
dc.creatorVillegas G, Jairo
dc.date.accessioned2021-04-12T14:04:17Z
dc.date.available2021-04-12T14:04:17Z
dc.date.issued2010-04-15
dc.description.abstractIn this paper we prove a number of results on sequence space representations and embedding theorems of Hörmander-Beurling spaces. As a consequence and using sharp results of Meise, Taylor and Vogt, a result of Kaballo on short sequences and hypoelliptic operators is extended to ?-hypoelliptic differential operators and to the vector-valued setting. © 2009 Elsevier Inc. All rights reserved.eng
dc.identifierhttps://eafit.fundanetsuite.com/Publicaciones/ProdCientif/PublicacionFrw.aspx?id=1422
dc.identifier.doi10.1016/j.jmaa.2009.11.030
dc.identifier.issn0022247X
dc.identifier.issn10960813
dc.identifier.otherWOS;000273958300014
dc.identifier.otherSCOPUS;2-s2.0-72149103268
dc.identifier.urihttp://hdl.handle.net/10784/27681
dc.language.isoengeng
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE
dc.relation.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-72149103268&doi=10.1016%2fj.jmaa.2009.11.030&partnerID=40&md5=9da9d301d22005906ec8031413250d8b
dc.rightshttps://v2.sherpa.ac.uk/id/publication/issn/0022-247X
dc.sourceJournal Of Mathematical Analysis And Applications
dc.subject?-Hypoelliptic differential operatorseng
dc.subjectBeurling ultradistributionseng
dc.subjectHörmander spaceseng
dc.subjectHörmander-Beurling spaceseng
dc.titleSome embedding theorems for Hörmander-Beurling spaceseng
dc.typearticleeng
dc.typeinfo:eu-repo/semantics/articleeng
dc.typeinfo:eu-repo/semantics/publishedVersioneng
dc.typepublishedVersioneng
dc.type.localArtículospa

Archivos

Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
1-s2.0-S0022247X09009706-main.pdf
Tamaño:
255.09 KB
Formato:
Adobe Portable Document Format
Descripción:

Colecciones