Manifold Learning with Orthogonal Geodesic Grids

dc.contributor.authorRuíz, Óscar E.
dc.contributor.authorCadavid, Carlos
dc.contributor.authorEbratt, Roberto
dc.contributor.departmentUniversidad EAFIT. Departamento de Ingeniería Mecánicaspa
dc.contributor.researchgroupLaboratorio CAD/CAM/CAEspa
dc.date.accessioned2016-11-18T22:30:23Z
dc.date.available2016-11-18T22:30:23Z
dc.date.issued2014
dc.description.abstractIn Reverse Engineering, it is capital to find a parametric trimmed surface which approximates a triangular mesh (2-manifold with border) M in R3 -- This article proposes and implements a quasi isometry f: M -> R2 which allows a parameterization of M -- We consider quasi - developable 2- manifolds M in R3 -- f(p) = (u,w) with (u,w) being the coordinates of p in M under a grid of geodesic curves Ci(u) and Cj(w) on M -- We seek that the geodesic curves Ci(u) and Cj(w) be orthogonal to each other on M -- This means, that the Ci(u) should not cross each other, and each Ci(u) should intersect each Cj(w) in perpendicular mannereng
dc.formatapplication/pdfeng
dc.identifier.citation@inproceedings{Ruiz_etal_2014_manif1, author={O. E. Ruiz and D. A. Acosta and C. Cadavid and R. Ebratt and S. Arroyave and J. Londono.}, title={Manifold Learning with Orthogonal Geodesic Grids.}, booktitle={Virtual Concept International Workshop (VC-IW 2014) in Innovation in Product Design and Manufacture.}, year={2014}, editor={}, volume={}, pages={}, note={ISBN: 978-2-9548927-0-2}, url={}, document_type={Extended Abstract}, address={Medellin, Colombia}, month={March 26-27}, publisher ={}, organization={}, abstract ={In Reverse Engineering, it is capital to find a parametric trimmed surface which approximates a triangular mesh (2-manifold with border) M in R3. This article proposes and implements a quasi isometry f : M -> R2 which allows a parameterization of M. We consider quasi - developable 2- manifolds M in R3. f(p) = (u,w) with (u,w) being the coordinates of p in M under a grid of geodesic curves Ci(u) and Cj(w) on M.We seek that the geodesic curves Ci(u) and Cj(w) be orthogonal to each other on M. This means, that the Ci(u) should not cross each other, and each Ci(u) should intersect each Cj(w) in perpendicular manner.} }spa
dc.identifier.isbn978-2-9548927-0-2
dc.identifier.urihttp://hdl.handle.net/10784/9694
dc.language.isoengspa
dc.relation.ispartofProceedings of the Virtual Concept International workshop (VC-IW 2014) in Innovation in Product Design and Manufacture, March 2014spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccesseng
dc.rights.localAcceso cerradospa
dc.subject.keywordComputer-aided Designeng
dc.subject.keywordInterpolationeng
dc.subject.keywordGeometry, riemannianeng
dc.subject.keywordGeometry, differentialeng
dc.subject.keywordReconstrucción superficialspa
dc.subject.keywordIngeniería inversaspa
dc.subject.keywordModelos computacionalesspa
dc.subject.lembDISEÑO CON AYUDA DE COMPUTADORspa
dc.subject.lembINTERPOLACIÓN (MATEMÁTICAS)spa
dc.subject.lembGEOMETRÍA DE RIEMANNspa
dc.subject.lembGEOMETRÍA DIFERENCIALspa
dc.titleManifold Learning with Orthogonal Geodesic Gridseng
dc.typeinfo:eu-repo/semantics/conferencePapereng
dc.typeconferencePapereng
dc.typeinfo:eu-repo/semantics/publishedVersioneng
dc.typepublishedVersioneng
dc.type.localDocumento de conferenciaspa

Archivos

Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
draft_Abstract_Manifold_Learning_VCIW_2014.pdf
Tamaño:
1.36 MB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.5 KB
Formato:
Item-specific license agreed upon to submission
Descripción: