Forecasting stock return using a recurrent neural network apply to a financial optimization problem
dc.contributor.advisor | Almonacid Hurtado, Paula Maria | spa |
dc.contributor.author | Ochoa Ramírez, Juliana | |
dc.coverage.spatial | Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees | eng |
dc.creator.degree | Magíster en Ciencias de Datos y Analítica | spa |
dc.creator.email | jochoar6@eafit.edu.co | spa |
dc.date.accessioned | 2021-06-16T23:34:58Z | |
dc.date.available | 2021-06-16T23:34:58Z | |
dc.date.issued | 2021 | |
dc.description.abstract | This paper presents a methodological proposal for optimizing financial asset portfolios by incorporating the returns predictions instead of the historical returns to calculate an efficient frontier. We changed the return means methodology to forecast by the return with LSTM neural network. We performed several simulation exercises to evaluate the methodology with real data from the US stock market to examine our portfolio optimization model. To evaluate our results, we compared the mean-variance frontier efficiency with the neural network return model. We selected one optimal portfolio that offered the highest expected return for a defined level of risk and compare both models. We show how the neural network return model has a better performance for different periods of time, outperforming the mean-variance model at the same level. | spa |
dc.identifier.ddc | 332.6 O164 | |
dc.identifier.uri | http://hdl.handle.net/10784/29872 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad EAFIT | spa |
dc.publisher.department | Escuela de Administración | spa |
dc.publisher.place | Medellín | spa |
dc.publisher.program | Maestría en Ciencias de los Datos y Analítica | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.local | Acceso abierto | spa |
dc.subject | LSTM | spa |
dc.subject | Redes Neuronales | spa |
dc.subject | Predicción | spa |
dc.subject | Optimización de portafolio | spa |
dc.subject.keyword | Neural Network | spa |
dc.subject.keyword | LSTM | spa |
dc.subject.keyword | forecasting | spa |
dc.subject.keyword | portfolio optimization | spa |
dc.subject.lemb | PORTAFOLIO DE INVERSIONES | spa |
dc.subject.lemb | RIESGO (FINANZAS) | spa |
dc.subject.lemb | ADMINISTRACIÓN DEL PORTAFOLIO | spa |
dc.subject.lemb | RENTABILIDAD | spa |
dc.title | Forecasting stock return using a recurrent neural network apply to a financial optimization problem | spa |
dc.type | masterThesis | eng |
dc.type | info:eu-repo/semantics/masterThesis | eng |
dc.type.hasVersion | acceptedVersion | eng |
dc.type.local | Tesis de Maestría | spa |
dc.type.spa | Artículo | spa |
Archivos
Bloque original
1 - 3 de 3
No hay miniatura disponible
- Nombre:
- carta-derechos-autor-eafit.pdf
- Tamaño:
- 828.66 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Formulario de autorización de publicación de obras
No hay miniatura disponible
- Nombre:
- Juliana_OchoaRamirez_2021.pdf
- Tamaño:
- 1.56 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Trabajo de grado
No hay miniatura disponible
- Nombre:
- carta-aprobacion-trabajo-grado.pdf
- Tamaño:
- 154.76 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Carta de aprobación de tesis de grado
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 2.5 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: