Publicación:
Forecasting stock return using a recurrent neural network apply to a financial optimization problem

dc.contributor.advisorAlmonacid Hurtado, Paula Maria
dc.contributor.authorOchoa Ramírez, Juliana
dc.coverage.spatialMedellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degreeseng
dc.creator.emailjochoar6@eafit.edu.cospa
dc.date.accessioned2021-06-16T23:34:58Z
dc.date.available2021-06-16T23:34:58Z
dc.date.issued2021
dc.description.abstractThis paper presents a methodological proposal for optimizing financial asset portfolios by incorporating the returns predictions instead of the historical returns to calculate an efficient frontier. We changed the return means methodology to forecast by the return with LSTM neural network. We performed several simulation exercises to evaluate the methodology with real data from the US stock market to examine our portfolio optimization model. To evaluate our results, we compared the mean-variance frontier efficiency with the neural network return model. We selected one optimal portfolio that offered the highest expected return for a defined level of risk and compare both models. We show how the neural network return model has a better performance for different periods of time, outperforming the mean-variance model at the same level.spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias de Datos y Analíticaspa
dc.format.mimetypeapplication/pdf
dc.identifier.ddc332.6 O164
dc.identifier.instnameinstname:Universidad EAFIT
dc.identifier.reponamereponame:Repositorio Institucional Universidad EAFIT
dc.identifier.repourlrepourl:https://repository.eafit.edu.co
dc.identifier.urihttps://hdl.handle.net/10784/29872
dc.language.isoeng
dc.publisherUniversidad EAFITspa
dc.publisher.facultyEscuela de Administraciónspa
dc.publisher.placeMedellínspa
dc.publisher.programMaestría en Ciencias de los Datos y Analíticaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.localAcceso abierto
dc.rights.localspa
dc.subjectLSTMspa
dc.subjectRedes Neuronalesspa
dc.subjectPredicciónspa
dc.subjectOptimización de portafoliospa
dc.subject.keywordNeural Networkspa
dc.subject.keywordLSTMspa
dc.subject.keywordforecastingspa
dc.subject.keywordportfolio optimizationspa
dc.subject.lembPORTAFOLIO DE INVERSIONESspa
dc.subject.lembRIESGO (FINANZAS)spa
dc.subject.lembADMINISTRACIÓN DEL PORTAFOLIOspa
dc.subject.lembRENTABILIDADspa
dc.titleForecasting stock return using a recurrent neural network apply to a financial optimization problem
dc.typeinfo:eu-repo/semantics/masterThesis
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.localTesis de Maestríaspa
dc.type.localArtículospa
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication

Archivos

Bloque original
Mostrando 1 - 3 de 3
No hay miniatura disponible
Nombre:
carta-derechos-autor-eafit.pdf
Tamaño:
828.66 KB
Formato:
Adobe Portable Document Format
Descripción:
Formulario de autorización de publicación de obras
No hay miniatura disponible
Nombre:
Juliana_OchoaRamirez_2021.pdf
Tamaño:
1.56 MB
Formato:
Adobe Portable Document Format
Descripción:
Trabajo de grado
No hay miniatura disponible
Nombre:
carta-aprobacion-trabajo-grado.pdf
Tamaño:
154.76 KB
Formato:
Adobe Portable Document Format
Descripción:
Carta de aprobación de tesis de grado
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.5 KB
Formato:
Item-specific license agreed upon to submission
Descripción: