Remote sensing-based measurement of Living Environment Deprivation: Improving classical approaches with machine learning
dc.citation.journalTitle | Plos One | |
dc.contributor.author | Arribas-Bel D | spa |
dc.contributor.author | Patino JE | spa |
dc.contributor.author | Duque JC | spa |
dc.contributor.department | Universidad EAFIT. Departamento de Economía y Finanzas | spa |
dc.contributor.researchgroup | Research in Spatial Economics (RISE) | eng |
dc.date.accessioned | 2021-04-12T14:26:18Z | |
dc.date.available | 2021-04-12T14:26:18Z | |
dc.date.issued | 2017-05-02 | |
dc.description.abstract | This paper provides evidence on the usefulness of very high spatial resolution (VHR) imagery in gathering socioeconomic information in urban settlements. We use land cover, spectral, structure and texture features extracted from a Google Earth image of Liverpool (UK) to evaluate their potential to predict Living Environment Deprivation at a small statistical area level. We also contribute to the methodological literature on the estimation of socioeconomic indices with remote-sensing data by introducing elements from modern machine learning. In addition to classical approaches such as Ordinary Least Squares (OLS) regression and a spatial lag model, we explore the potential of the Gradient Boost Regressor and Random Forests to improve predictive performance and accuracy. In addition to novel predicting methods, we also introduce tools for model interpretation and evaluation such as feature importance and partial dependence plots, or cross-validation. Our results show that Random Forest proved to be the best model with an R2 of around 0.54, followed by Gradient Boost Regressor with 0.5. Both the spatial lag model and the OLS fall behind with significantly lower performances of 0.43 and 0.3, respectively. © 2017 Arribas-Bel et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. | eng |
dc.identifier | https://eafit.fundanetsuite.com/Publicaciones/ProdCientif/PublicacionFrw.aspx?id=6640 | |
dc.identifier.issn | 19326203 | |
dc.identifier.other | SCOPUS;2-s2.0-85019352713 | |
dc.identifier.uri | http://hdl.handle.net/10784/28053 | |
dc.language.iso | eng | eng |
dc.publisher | Public Library of Science | |
dc.relation.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85018969463&doi=10.1371%2fjournal.pone.0176684&partnerID=40&md5=d2d850a31061064e1a4badd1cbeb3c3b | |
dc.rights | https://v2.sherpa.ac.uk/id/publication/issn/1932-6203 | |
dc.source | Plos One | |
dc.subject.keyword | imagery | eng |
dc.subject.keyword | land use | eng |
dc.subject.keyword | least square analysis | eng |
dc.subject.keyword | model | eng |
dc.subject.keyword | random forest | eng |
dc.subject.keyword | remote sensing | eng |
dc.subject.keyword | validation process | eng |
dc.subject.keyword | city | eng |
dc.subject.keyword | England | eng |
dc.subject.keyword | human | eng |
dc.subject.keyword | machine learning | eng |
dc.subject.keyword | procedures | eng |
dc.subject.keyword | remote sensing | eng |
dc.subject.keyword | socioeconomics | eng |
dc.subject.keyword | statistical analysis | eng |
dc.subject.keyword | statistical model | eng |
dc.subject.keyword | urban population | eng |
dc.subject.keyword | Cities | eng |
dc.subject.keyword | Data Interpretation | eng |
dc.subject.keyword | Statistical | eng |
dc.subject.keyword | England | eng |
dc.subject.keyword | Humans | eng |
dc.subject.keyword | Least-Squares Analysis | eng |
dc.subject.keyword | Linear Models | eng |
dc.subject.keyword | Machine Learning | eng |
dc.subject.keyword | Remote Sensing Technology | eng |
dc.subject.keyword | Socioeconomic Factors | eng |
dc.subject.keyword | Urban Population | eng |
dc.title | Remote sensing-based measurement of Living Environment Deprivation: Improving classical approaches with machine learning | eng |
dc.type | article | eng |
dc.type | info:eu-repo/semantics/article | eng |
dc.type | info:eu-repo/semantics/publishedVersion | eng |
dc.type | publishedVersion | eng |
dc.type.local | Artículo | spa |
Archivos
Bloque original
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- pone_0176684_pdf.pdf
- Tamaño:
- 4.18 MB
- Formato:
- Adobe Portable Document Format
- Descripción: