Estimation of fundamental diagrams in large-scale traffic networks with scarce sensor measurements

dc.citation.journalTitleIeee International Conference On Intelligent Transportation Systems-Itsceng
dc.contributor.authorMontoya, O. L. Quintero
dc.contributor.authorCanudas-de-Wit, Carlos
dc.contributor.departmentUniversidad EAFIT. Escuela de Cienciasspa
dc.contributor.researchgroupModelado Matemáticospa
dc.date.accessioned2021-04-12T14:07:17Z
dc.date.available2021-04-12T14:07:17Z
dc.date.issued2018-01-01
dc.description.abstractThe macroscopic fundamental diagram (MFD) relates space mean flow density and the speed of an entire network. We present a method for the estimation of a ``normalized'' MFD with the goal to compute specific Fundamental Diagram in places where loop sensors data is no available. The methodology allows using some data from different points in the city and possibly combining several kinds of information. To this aim, we tackle at least three major concerns: the data dispersion, the sparsity of the data, and the role of the link (with data) within the network. To preserve the information we decided to treat it as two dimensional signals (images), so we based our estimation algorithm on image analysis, preserving data veracity until the last steps (instead of first matching curves that induce a first approximation). Then we use image classification and filtering tools for merging of main features and scaling. Finally, just the Floating Car Data (FCD) is used to map back the general form to the specific road where sensors are missing. We obtained a representation of the street by means of its likelihood with other links within the same network.eng
dc.identifierhttps://eafit.fundanetsuite.com/Publicaciones/ProdCientif/PublicacionFrw.aspx?id=8810
dc.identifier.doi10.1109/ITSC.2018.8569817
dc.identifier.issn21530009
dc.identifier.otherWOS;000457881303069
dc.identifier.urihttp://hdl.handle.net/10784/27808
dc.language.isoengeng
dc.publisherIEEE
dc.relation.urihttps://ieeexplore.ieee.org/document/8569817
dc.rightsIEEE
dc.sourceIeee International Conference On Intelligent Transportation Systems-Itsc
dc.subject.keywordRECONSTRUCTIONeng
dc.subject.keywordMODELeng
dc.titleEstimation of fundamental diagrams in large-scale traffic networks with scarce sensor measurementseng
dc.typearticleeng
dc.typeinfo:eu-repo/semantics/articleeng
dc.typeinfo:eu-repo/semantics/publishedVersioneng
dc.typepublishedVersioneng
dc.type.localArtículospa

Archivos

Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
Estimation_of_fundamental_diagrams_in_large-scale_traffic_networks_with_scarce_sensor_measurements.pdf
Tamaño:
1.6 MB
Formato:
Adobe Portable Document Format
Descripción:

Colecciones