Triangular mesh parameterization with trimmed surfaces

dc.citation.journalTitleInternational Journal On Interactive Design And Manufacturingeng
dc.contributor.authorRuiz, O.E.
dc.contributor.authorMejia, D.
dc.contributor.authorCadavid, C.A.
dc.contributor.departmentUniversidad EAFIT. Departamento de Ingeniería Mecánicaspa
dc.contributor.researchgroupLaboratorio CAD/CAM/CAEspa
dc.date.accessioned2021-04-16T21:59:55Z
dc.date.available2021-04-16T21:59:55Z
dc.date.issued2015-04-28
dc.description.abstractGiven a 2-manifold triangular mesh M subset of R-3, with border, a parameterization of M is a FACE or trimmed surface F = {S, L-0, ... , L-m. F is a connected subset or region of a parametric surface S, bounded by a set of LOOPs L-0, ... , L-m such that each L-i subset of S is a closed 1-manifold having no intersection with the other L-j LOOPs. The parametric surface S is a statistical fit of the mesh M. L-0 is the outermost LOOP bounding F and L-i is the LOOP of the i-th hole in F (if any). The problem of parameterizing triangular meshes is relevant for reverse engineering, tool path planning, feature detection, redesign, etc. State-of-art mesh procedures parameterize a rectangular mesh M. To improve such procedures, we report here the implementation of an algorithm which parameterizes meshes M presenting holes and concavities. We synthesize a parametric surface S subset of R-3 which approximates a superset of the mesh M. Then, we compute a set of LOOPs trimming S, and therefore completing the FACE F = {S, L-0, ... , L-m. Our algorithm gives satisfactory results for M having low Gaussian curvature (i.e., M being quasi-developable or developable). This assumption is a reasonable one, since M is the product of manifold segmentation pre-processing. Our algorithm computes: (1) a manifold learning mapping phi : M -> U subset of R-2, (2) an inverse mapping S : W subset of R-2 -> R-3, with W being a rectangular grid containing and surpassing U. To compute phi we test IsoMap, Laplacian Eigenmaps and Hessian local linear embedding (best results with HLLE). For the back mapping (NURBS) S the crucial step is to find a control polyhedron P, which is an extrapolation of M. We calculate P by extrapolating radial basis functions that interpolate points inside phi(M). We successfully test our implementation with several datasets presenting concavities, holes, and are extremely non-developable. Ongoing work is being devoted to manifold segmentation which facilitates mesh parameterization.eng
dc.identifierhttps://eafit.fundanetsuite.com/Publicaciones/ProdCientif/PublicacionFrw.aspx?id=1701
dc.identifier.doi10.1007/s12008-015-0276-1
dc.identifier.issn19552513
dc.identifier.issn19552505spa
dc.identifier.otherWOS;000364009400005
dc.identifier.otherSCOPUS;2-s2.0-84945437192
dc.identifier.urihttp://hdl.handle.net/10784/29522
dc.languageeng
dc.publisherSpringer-Verlag France
dc.relation.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84945437192&doi=10.1007%2fs12008-015-0276-1&partnerID=40&md5=07f29541c91ef8edd0b33d6b48b539dc
dc.rightshttps://v2.sherpa.ac.uk/id/publication/issn/1955-2513
dc.sourceInternational Journal On Interactive Design And Manufacturing
dc.subject.keywordTriangular mesh parameterizationeng
dc.subject.keywordTrimmed surfaceeng
dc.subject.keywordManifold learningeng
dc.subject.keywordNURBSeng
dc.subject.keywordRBFseng
dc.titleTriangular mesh parameterization with trimmed surfaceseng
dc.typeinfo:eu-repo/semantics/articleeng
dc.typearticleeng
dc.typeinfo:eu-repo/semantics/publishedVersioneng
dc.typepublishedVersioneng
dc.type.localArtículospa

Archivos

Colecciones