On The Critical Point Structure of Eigenfunctions Belonging to the First Nonzero Eigenvalue of a Genus Two Closed Hyperbolic Surface

dc.citation.journalTitleScience Journal of Physicseng
dc.contributor.authorCarlos A. Cadavid
dc.contributor.authorOsorno, María C.
dc.contributor.authorRuiz OE
dc.contributor.departmentUniversidad EAFIT. Departamento de Ingeniería Mecánicaspa
dc.contributor.researchgroupLaboratorio CAD/CAM/CAEspa
dc.date.accessioned2021-04-16T21:59:57Z
dc.date.available2021-04-16T21:59:57Z
dc.date.issued2012-05-01
dc.description.abstractWe develop a method based on spectral graph theory to approximate the eigenvalues and eigenfunctions of the Laplace-Beltrami operator of a compact riemannian manifold. The method is applied to a closed hyperbolic surface of genus twoeng
dc.identifierhttps://eafit.fundanetsuite.com/Publicaciones/ProdCientif/PublicacionFrw.aspx?id=4914
dc.identifier.doi10.7237/sjp/128
dc.identifier.issn22766367
dc.identifier.urihttp://hdl.handle.net/10784/29537
dc.languageeng
dc.publisherScience Journal Publication
dc.rightsScience Journal Publication
dc.sourceScience Journal of Physics
dc.subject.keywordClosed hyperbolic surfaceeng
dc.subject.keywordLaplacianeng
dc.subject.keywordEigenvalueeng
dc.subject.keywordEigenfunctioneng
dc.subject.keywordCritical pointeng
dc.subject.keywordSpectral graph theoryeng
dc.titleOn The Critical Point Structure of Eigenfunctions Belonging to the First Nonzero Eigenvalue of a Genus Two Closed Hyperbolic Surfaceeng
dc.typeinfo:eu-repo/semantics/articleeng
dc.typearticleeng
dc.typeinfo:eu-repo/semantics/publishedVersioneng
dc.typepublishedVersioneng
dc.type.localArtículospa

Archivos

Colecciones