Algebraic geometry and group theory in geometric constraint satisfaction for computer-aided design and assembly planning

dc.citation.epage294spa
dc.citation.issue4spa
dc.citation.journalTitleIIE Transactionseng
dc.citation.journalTitleIIE Transactionsspa
dc.citation.spage281spa
dc.citation.volume28spa
dc.contributor.authorRuíz, Óscar E.
dc.contributor.authorFerreira, Placid M.
dc.contributor.departmentUniversidad EAFIT. Departamento de Ingeniería Mecánicaspa
dc.contributor.researchgroupLaboratorio CAD/CAM/CAEspa
dc.date.accessioned2016-11-30T15:20:17Z
dc.date.available2016-11-30T15:20:17Z
dc.date.issued1996
dc.description.abstractMechanical design and assembly planning inherently involve geometric constraint satisfaction or scene feasibility (GCS/SF) problems -- Such problems imply the satisfaction of proposed relations placed between undefined geometric entities in a given scenario -- If the degrees of freedom remaining in the scene are compatible with the proposed relations or constraints, a set of entities is produced that populate the scenario satisfying the relations -- Otherwise, a diagnostic of inconsistency of the problem is emitted -- This problem appears in various forms in assembly planning (assembly model generation), process planning, constraint driven design, computer vision, etc -- Previous attempts at solution using separate numerical, symbolic or procedural approaches suffer serious shortcomings in characterizing the solution space, in dealing simultaneously with geometric (dimensional) and topological (relational) inconsistencies, and in completely covering the possible physical variations of the problem -- This investigation starts by formulating the problem as one of characterizing the solution space of a set of polynomials -- By using theories developed in the area of algebraic geometry, properties of Grobner Bases are used to assess the consistency and ambiguity of the given problem and the dimension of its solution space -- This method allows for die integration of geometric and topological reasoning -- The high computational cost of Grobner Basis construction and the need for a compact and physically meaningful set of variables lead to the integration of known results on group theory -- These results allow the characterization of geometric constraints in terms of the subgroups of the Special Group of Euclidean displacements in E^3, SE(3) -- Several examples arc developed which were solved with computer algebra systems (MAPLE and Mathematica) -- They are presented to illustrate the use of the Euclidean group-based variables, and to demonstrate the theoretical completeness of the algebraic geometry analysis over the domain of constraints expressible as polynomialseng
dc.identifier.doi10.1080/07408179608966276
dc.identifier.issn0740-817X
dc.identifier.urihttp://hdl.handle.net/10784/9782
dc.language.isoengeng
dc.publisherTaylor & Francisspa
dc.relation.ispartofIIE Transactions, Volume 28, Issue 4, pp 281-294spa
dc.relation.urihttp://dx.doi.org/10.1080/07408179608966276
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.rights.localAcceso cerradospa
dc.subject.keywordGeometry, algebraicspa
dc.subject.keywordGroups, Theory ofspa
dc.subject.keywordShape theoryspa
dc.subject.keywordPolynomialsspa
dc.subject.keywordComputer-aided Designspa
dc.subject.keywordGeometryeng
dc.subject.keywordalgebraiceng
dc.subject.keywordGroupseng
dc.subject.keywordTheory ofeng
dc.subject.keywordShape theoryeng
dc.subject.keywordPolynomialseng
dc.subject.keywordComputer-aided Designeng
dc.subject.keywordRestricciones geométricas.keywor
dc.subject.keywordBases de Gröbner.keywor
dc.subject.keywordRazonamiento geométrico.keywor
dc.subject.lembGEOMETRÍA ALGEBRÁICAspa
dc.subject.lembTEORÍA DE LOS GRUPOSspa
dc.subject.lembTEORÍA DE LA FORMA (TOPOLOGÍA)spa
dc.subject.lembPOLINOMIOSspa
dc.subject.lembDISEÑO CON AYUDA DE COMPUTADORspa
dc.titleAlgebraic geometry and group theory in geometric constraint satisfaction for computer-aided design and assembly planningeng
dc.typeinfo:eu-repo/semantics/articleeng
dc.typearticleeng
dc.typeinfo:eu-repo/semantics/publishedVersioneng
dc.typepublishedVersioneng
dc.type.localArtículospa

Archivos

Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
AlgebraicGeometry.pdf
Tamaño:
1.14 MB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.5 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones